Report No, FHWA/RD-85-088

BRIDGE FORMULA DEVELOPMENT

Final Report

June 1985

Final Report
This document is available to the public through the National Technical Information
Service, Springfield, Virginia 22161

Prepared for
FEDERAL HIGHWAY ADMINISTRATION
Offices of Research \& Development
Washington, D.C. 20590

TECHNICAL REPGRT STANCARE TITLEPAUE

1. Repori No. FHWA/RD-85-088	2. Government Accussion No.	3 Recipient's Conors ${ }^{\text {do }}$
		$\begin{aligned} & 5 \text { Repor, Dare } \\ & \text { June } 1985 \end{aligned}$
		6. Pertorming O.gonizotion Code
James S. Noel, Ray W. James, Howard L. Furr, Francisco E. Bonilla		Q Pertorning Orgonization Repori No .
9. Performing Orgonizotion Name and Address Texas Transportation Institute Texas A\&M University College Station, TX 77843		10 Work Unit No
		11. Controct o. Grani No. DTFH61-84-C-00022
		13. Type of Rerori and Period Covered
12. Sponsoring Agency Name and Address U.S. Department of Transportation Federal Highway Administration Washington, D.C. 20590		Final Report
		May 1984 to June 1985
		14. Sponsoring Ageney $\overline{\text { Fode }}$
15. Supplementory NotesFHWA Contract Manager: Lloyd Cayes		

18. Abstroct

 if modifications could be suggested to make it more rational. The intent was to more fully utilize the capacity of existing bridges without significantly shortening the service life of any.A formula, independent of the number of included axles, was developed to accomplish the objective. As with the current formula, it is applicable both to the overall wheelbase and to all included subgroups of axles. The maximum weights for single and tandem axies were assumed to be unchanged. If enforced, the proposed formula assures that HS20 bridges will not be loaded to more than 1.05 times the design stress nor will H15 bridges be loaded to more than 1.30 times the design stress. The formula reduced the maximum weight allowed on four or more closely spaced axles. However, for most practical lengths, the formula is less restrictive than the current law.

A brief study of the influence the proposed formula would have on pavement fatigue was accomplished. For most practical heavy vehicles, the formula would result in a greater number of equivalent axle loads per vehicle. One equivalent axle load causes the same pavement fatigue damage as a single $18,000 \mathrm{lb}(80.06 \mathrm{kN}) \mathrm{axle}$. The number of equivalent axle loads is commonly used as a measure of the fatigue damage a heavy vehicle imposes on the pavement.

A detailed study of the effect the adoption of the proposed bridge formula would have on pavements is recommended. Such a study should consider costs, benefits, and potential formula modifications.

This work was accomplished, and this report prepared by a team of engineers and researchers including James S. Noel, Ray W. James, Howard L. Furr, Francisco E. Bonilla, and Norris D. Stubbs.

Early in the program a technical advisory committee was invited to assist and advise in the conduct of the work. These prominent highway engineers and transportation authorities were especially helpful with their thoughtful reviews and suggestions. They included Frank D. Sears, Federal Highway Administration; Veldo M. Goins, Oklahoma Department of Highways; Edward V. Hourigan, New York State Department of Transportation; Robert Cassano, California Department of Transportation; Clellon Loveall, Tennessee Department of Transportation; W. Jack Wilkes, Figg and Mueller Engineers, Inc.; and John P. Rutter, G. A. and F. C. Wagnan, Inc. This committee met on two separate occasions with the staff, listened patiently to our ideas, and then made their detailed and professional critiques to us.

Our grateful acknowledgment is given to the many industries, trade associations, and professional organizations that gave freely of their data and time to help with this project.

A special word of appreciation is due Mr. Eldon Klein of the California Department of Transportation, who spent a great deal of effort to help with this endeavor. He understands, as well as anyone, the complex relationships between highways and highway users.

Support for this research was provided by the Federal Highway Administration, Offices of Research and Development, Contract No. DTFH61-84-C00022. We are especially grateful for the valuable technical coordination and leadership provided by Dr. Lloyd R. Cayes, FHWA Contract Manager.

TABLE OF CONTENTS
Page
INTRODUCTION 1
HISTORICAL COMMENTS 2
FATIGUE IN BRIDGES AND PAVEMENTS 9
PAVEMENTS 9
BRIDGES 10
Concrete Bridges 14
Steel Beam Bridges 18
CORROSION FATIGUE 19
SUMMARY 22
LIVE LOADS TO CAUSE SPECIFIED STRESS RATIOS 23
DEAD LOAD RATIOS FOR VARIOUS BRIDGE DESIGNS 23
CALCULATION OF SERVICE LOADS TO CAUSE SPECIFIED 39 STRESS RATIOS
Bridges Designed by the Working Stress 39
Design (WSD) Procedure
Bridges Designed by the Load Factor 40
Design (LFD) Procedure
Composite Steel-Concrete Bridges 42
RATIONALE FOR THE FORMULA 43
PROPOSED BRIDGE FORMULA 47
ASSUMPTIONS 47
DISCUSSION OF THE PROPOSED FORMULA 52
OBSERVED AXLE GROUP WEIGHTS 52
BOGIES 60
SHORT MULTIAXLE VEHICLES 60

TABLE OF CONTENTS (cont inued)

Page
CONVENTIONAL LENGTH VEHICLES 62
BRIDGE FATIGUE 69
PAVEMENT CONSIDERATIONS 75
CONCLUSIONS 82
APPENDIX A - STATISTICAL ANALYSIS OF TRUCK WEIGHT DATA 84
BIBLIOGRAPHY 95
REFERENCES 103

Table
1 Permissible Gross Loads for Vehicles in Regular Operation. Bridge Table A Taken from Reference (5) . . . 4

Permissible Gross Loads for Vehicles in Regular Operation. Bridge Table B Taken from Reference (5) . . . 5

Effect of a Thirty Percent Increase in Axle Load on Equivalent Axle Load Factors of Two Pavements 13

Dead Load Shear Ratios DL/(LL+I) - HS2O Bridges 24
Dead Load Moment Ratios DL/(LL+I) - H 15 Bridges. 25
Dead Load Shear Ratios.DL/(LL+I) - H 15 Bridges 25
Dead Load Ratios DL/(LL+I) - HS20 Bridges. Taken from Reference (18) 36

Permissible Loads Based on Proposed Formula 49
Changes in Allowable Weights, in Thousands of Pounds, from Formula B (Current Law) to the Proposed Formula. . . 53

Existing and Proposed Bridge Weight Formulas Superposed Over Tables Reflecting the Weights of Single Axles and Two-Axle Groups Observed for All Vehicle Types in Loadmeter Surveys Conducted in 1982. Note that the Proposed and Current Formulas are Identical for These Groupings55

Existing and Proposed Bridge Weight Formulas Superposed Over Tables Reflecting the Weights of ThreeAxle Groups Observed for A11 Vehicle Types in Loadmeter Surveys Conducted in 1982. (263, 326 Observations)56

Existing and Proposed Bridge Weight Formulas Superposed Over Tables Reflecting the Weights of FourAxle Groups Observed for All Vehicle Types in Loadmeter Surveys Conducted in 1982. (168,334
Observations)57
Table Page14 Existing and Proposed Bridge Weight Formulas Super-posed Over Tables Reflecting the Weights of Five-Axle Groups Observed for All Vehicle Types in Load-meter Surveys Conducted in 1982. (79,109
Observations) 58
15
Maximum Legal Weights of Selected Practical VehiclesUnder Existing and Proposed Formulas when H15
Bridges Govern. 68
16
Maximum Calculated Stress Ranges ${ }^{\text {a }}$ for VariousSelected Vehicles on HS2O Designed Simple SpansUsing A36 Steel73
1718Vehicle Frequency by Vehicle Type91
23 Two-Way Classification for Three-Axle Group 94

Figure

Page
1 Equivalent Axle Load Factor Axle Load, Flexible Pavement, $S N=6, p=2.5^{(7)}$. 11

Equivalent Axle Load Factor vs. Load, Rigid Pavement, $D=8 \mathrm{in}, \mathrm{p}=2.7^{(7)}$12
S-N Curves for Plain Concrete Beams (12) 15
S-N Curves for Concrete Reinforcing Stee ${ }^{(6,13)}$ 16

5 Derived S-N Curve for 7-Wire Strand Prestressing Steel ${ }^{(14)}$17S-N Curve for Steel Beam with Partial CoverPlate ${ }^{(6)}$20
S-N Curves for Beams Reinforced with Hot RolledBar ${ }^{(16)}$21
8 Dead Load Moment Ratios DL/(LL+I) for Simple Span, Noncomposite HS2O Bridges 269Dead Load Shear Ratios DL/(LL+I) for Simple Span,Noncomposite HS20 Brdiges.27
10
Dead Load Moment Ratios DL/(LL+I) for Simple Span, Noncomposite H15 Brdiges 28
11 Dead Load Shear Ratios DL/(LL+I) for Simple Span, Noncomposite H15 Bridges 2912
Idealized Moment Ratios DL/(LL+I) for HS2O Bridges 30
Idealized Shear Ratios DL/(LL+I) for HS20 Bridges. 31
Idealized Moment Ratios DL/(LL+I) for H15 Bridges. 32
Idealized Shear Ratios DL/(LL+I) for H15.Bridges 33
Dead Load Moment Ratios DL/(DL+LL+I) for H15 andH2O Bridges.34
Figure Page
17 Dead Load Shear Ratios DL/(DL+LL+I) for H15 and H2O Bridges 35
18
Dead Load Moment Ratios DL/(LL+I) for Continuous,Composite Welded Plate Girders - HS2O3719 Dead Load Shear Ratios DL/(LL+I) for Continuous,Composite Welded Plate Girders - HS20 3820The Maximum Uniform Load, $24 \mathrm{ft}(7.32 \mathrm{~m})$ Long,Required to Cuase the Specified Ratios of DesignMoments on Simple Bridge Spans. Note that a 33 ft(10.06 m) Span is Critical for an HS20 Bridge Whilea $57 \mathrm{ft}(17.37 \mathrm{~m})$ Span is Critical for an H 15 Bridge44
21
The Maximum Uniform Loads, as a Function of LoadLength, Defined by the Stress Ratio. Note that H15Bridges are Critical for Vehicle Lengths up to 67 ft(20.42 m), but HS20 Bridges are Critical for theLonger Lengths4522 The Proposed Bridge Formula Compared to the DerivedMaximum Uniform Loads that Cause the Specified Over-stresses (1.05 for HS20, 1.3 for H15 Bridges) .48
23
Stress Ratios Generated in H15 Bridges by MultiaxledBogies Having Maximum Weights Allowed by Table BCompared with Those Having Maximum Weights Allowedby the Proposed Formula6124 Graph Contrasting the Stress Ratios Generated in H15Bridges by the Legal Maximum Loads on 352 VehiclesAccording to Formula B with those by the ProposedFormula63
Graph Contrasting the Stress Ratio Generated in H15Bridges by the Legal Maximum Loads on 3 S 3 VehiclesAccording to Formula B with those by the ProposedFormula64
26 Graph Showing Stress Ratios of Selected 3S2 Vehicles on H15 Bridges 65
27
Critical Weights for Selected Practical VehiclesCausing Specified Overstresses of 105\% on HS2OBridges Compared to Proposed Formula66
28 Critical Weights for Selected Practical Vehicles Causing Specified Overstresses of 130% on H 15
Bridges Compared to Proposed Formula 67
29 Live Load Plus Impact Stress Range Caused by MaximumLegal Weight 352 Vehicle According to ProposedFormula for A36 Steel Stringers Designed for 100,000Cycles of HS20 Load.Live Load Plus Impact Stress Range Caused by MaximumLegal Weight 2S2-2-2 Vehicle According to ProposedFormula for A36 Steel Stringers Designed for 100,000Cycles of HS20 Load72
31 Equivalent Axle Loads of 3S2 Vehicles for the
Proposed Formula and the Existing Formula. 77
32
Curves Illustrating the Gross Vehicle Weight andPayload per Equivalent Axle Load for VehiclesComplying with the Proposed and Current BridgeFormulas. These are the Same Vehicles as in
Figure 31. 78
33 Equivalent Axle Loads of 2S1-2 Vehicles for the Proposed Formula and the Existing Formula. 79
34 Curves Illustrating the Gross Weight and Payload perEquivalent Axle Load for 2S1-2 Vehicles Complyingwith the Proposed and Current Bridge Formulas.These are the Same Vehicles as in Figure 33. 80
35 Typical Weight Data for 58 Vehicles, 1983. 85

METRIC CONVERSION FACTORS

During the past several years there has been increasing activity oriented toward reevaluating the Federal truck weight laws. The primary motive for this reevaluation seems to be to change the truck bridge formula so that the stress producing potential in highway bridges is more uniform across the range of both truck and bridge configurations. The bridge formula currently in effect, the so-called Table B (or Formula B), does not always follow the rationale that the weight of the heavier vehicles should be systematically distributed to guarantee that specified stress levels are never exceeded in bridge members.

The levels chosen for this report were 1.05 times the design stress for HS20 bridges and 1.30 times the design stress for H 15 bridges. These ratios reflect an expectation that HS2O bridges will perform satisfactorily for a full length design service life while a foreshortened service life can be tolerated of H 15 bridges where earlier replacement is typically anticipated. These specific maximum stress levels have traditionally been used by highway structures engineers as a middle ground between the demand for heavier vehicles and the need to protect the bridges from premature failures due to fatigue.

Consequently a new formula, designed to regulate maximum truck weights as well as the allowable weights on all possible axle subgroupings and based on a rational consideration of the conflicting interests of both the trucking industry and the highway engineers and managers, is being proposed. The intention for introducing the new formula is to allow every vehicle to have the maximum possible gross weight while simultaneously assuring that the deterioration of the highway pavements and bridges is not accelerated due to excessive stress levels. However, the implementation of the new, in many instances more liberal, bridge weight formula should be accompanied by an increased resolve to enforce the law in all its aspects, including single axle, tandem axle, intermediate axle groupings, and gross weights.

HISTORICAL COMMENTS

The use of trucks for intercity transportation and the construction of highways and highway structures has grown and improved at near geometric rates since 1900. Currently trucks handle near 60 percent of the manufactured products, 80 percent of the fruits and vegetables, and 100 percent of the livestock that are transported cross-country.(1) During most of this period the individual states built the roads and regulated the trucks, but from the early 1930's the American Association of State Highway Officials (AASHO) began showing concern for the nationwide regulation of truck weights and dimensions to both protect the pavements and bridges and to expedite interstate transport. This concern culminated in the 1946 AASHO policy that single axles not weigh more than $18,000 \mathrm{lb}(80.06 \mathrm{kN})$, tandem axles (under $8 \mathrm{ft}(2.44 \mathrm{~m})$ spacing) not weigh more than $32,000 \mathrm{lb}(142.3 \mathrm{kN})$, and that the gross weight nor the weight of any interior group of axles exceed

$$
\begin{equation*}
W=1025(L+24)-3 L^{2} \tag{1}
\end{equation*}
$$

where W is the weight in pounds and L is the out-to-out dimension of the extreme axles in feet. ${ }^{(2)}$

The first significant Federal legislation of truck weight came with the Federal Aid Highway Act of 1956, the act which initially provided for the planning, financing, and construction of the National System of Interstate and Defense Highways. This legislation stated that no funds would be used for the Interstate System within any State that allowed single axles heavier than $18,000 \mathrm{lb}(80.06 \mathrm{kN})$, tandem axles heavier than $32,000 \mathrm{lb}(142.3 \mathrm{kN})$, or an overall gross weight greater than $73,280 \mathrm{lb}(321.9 \mathrm{kN})$. However, "Grandfather Clauses" provided that any vehicle that operated legally within a State could continue to operate, legally, within that State after the passage of the law.

In the 1950's, under the leadership of H. K. Stephenson, a formula having a format very similar to the current Federal law was advanced. $(3,4)$ His work led directly to the formulas recommended in the House Document No.
354.(5) In that document, representing the views of many responsible organizations and the findings of the recently completed AASHO Road Test, the Highway Research Board recommended that bridge Formula A, see table 1, be immediately adopted for the Interstate System. ${ }^{(6)}$ The document further recommended that after July 1, 1967 that bridge Formula A be replaced by bridge Formula B, reproduced here in table 2. In conjunction with this latter recommendation the document suggested increasing the maximum single axle weight to $20,000 \mathrm{lb}(88.96 \mathrm{kN})$ and the maximum tandem axle weight to $34,000 \mathrm{lb}(151.2 \mathrm{kN})$.

One important aspect of the tables is the second footnote under each. This footnote flatly prohibits the operation of certain short wheelbase, multiaxial trucks over H 15 bridges. The point was clearly made in that document that such vehicles would overstress the H15 bridges more than 30 percent; an intolerable situation.

Very little happened in response to these recommendations, however, until 1975, at which time the U.S. Congress enacted legislation permitting the states to increase the weight limits on the Interstate System to essentially those of Formula B. A maximum gross weight of $80,000 \mathrm{lb}$ (355.8 kN), irrespective of the formula, was also imposed. This legislation was passed shortly after the $55-\mathrm{mph}(88 \mathrm{~km} / \mathrm{hr}$) speed limit was adopted in December 1973 and is generally believed to be a concession to the trucking industry to allow them to regain some of the productivity lost due to the slower speeds.

The most recent legislation is referred to as the Surface Transportation Assistance Act of 1982. The Vehicle Weight Limitations section of the Act is reproduced verbatim below.

VEHICLE WEIGHT, LENGTH, AND WIDTH LIMITATIONS
Sec. 133. (a) Section 127 of title 23 of the United States Code is amended to read:
"127. Vehicle weight limitations-Interstate System
"(a) No funds authorized to be appropriated for any fiscal year under provisions of the Federal-Aid Highway

Table 1. Permissible Gross Loads for Vehicles in Regular Operation. Bridge Table A Taken From Reference (5)

$$
W=500\left(\frac{\mathrm{LN}}{\mathrm{~N}-1}+12 \mathrm{~N}+32 \left\lvert\, \begin{array}{l}
1 \mathrm{ft}=0.3048 \mathrm{~m} \\
11 \mathrm{~b}=4.448 \mathrm{~N}
\end{array}\right.\right.
$$

Distance In fect between the extremes of any group of 2 or more consecutive axics	Maximum load in pounds carried on any group of 2 or more consccutive axles ${ }^{2}$							
	2 axles	3 axies	4 axles	8 sxles	6 axiles	7 axles	8 arles	9 axdes
	32,000							
5	32,000							
	32, 000							
	32,000							
	32,000	40,000						
	(37,000)	41,000						
10	$(38,000)$	41, 500						
112	$(39,000)$	42,000						
12	$(40,000)$	43,000	48, 000	-....--				
13		44,000	49,000					
14		44,500	49, 600					
15		45,000 48,000	60,000 80,800	50,000				
17		47,000	61, 500	86, 600				
18		47, 500	52, 000	57,000				
19		48,000	62,500	58, 000				
20		49,000	53, 600	68, 600	61,000			
21		50, 000	51,000	60,000	61, 50			
22		50,500	64, 500	60, 000	65, 000			
23		51,000	65, 500	60,500	66,000			
24		52, 000	56, 000	61, 000	60,500			
25		53, 000 5300	66, 500	61,600 62,000	67,000	$\begin{array}{ll} 72,510 \\ 7 n 00 \end{array}$		
$28 .$		53,510 54,000	67,500 88,000	62,000 63,010	67,000 68,000	73,000 74,090		
28		(55, 000)	68, 500	63, 500	69, 000	74, 500	80,000	
29		(56, 000)	69, 500	64,000	60, 500	75, 000	80, 500	-*--.-.
30		(56, 510)	60, 010	65, 010	70, 000	75, 500	81,000	
31		(57, 000)	60, 500	65, 600	70, 500	78,000	81,500	
32		(58, 000)	61, 500	66,000	71, 000	70,500	82,500	88, 000
33	-....-.	$(59,000)$ $(59,500)$	62,000 62,500	66,500 67,000	72,000 72,500	77,000 78,000	83,000 83,500	88,500 88,000
		(00,000)	63, 600	68,000	73, 000	78. 600	81, 000	89, 500
36			61,000	68, 500	73, 500	70, 000	81.500	90,000
37			64, 800	69, 000	74,000	79,500	85,000 85	91,000
38.		--.-.----	65, 500	70,000	75,000 75,500	80,000 81,000	85,500 86,500	91,500 92,000
39	--	66,000 60,500	70,610 71,000	75,500 70,000	81,000 81,500	87, 000	92, 510
41			67, 600	71, 800	76, 500	82, 000	87, 500	93. 000
42			68, 000	72.000	77,000	82, 500	88.000	93,500
43			68, 500	73, 000	78, 050	83, 000	88, 500	94,000
44			69,500	73, 500	78, 500	83, 500	89, 000	95.000
45			70,000	74, 000	79, 010	84, 000	89, 500	95,500
46			70, 800	75. 000	79,500	85, 000	90, 800	98, 000
47			71,500	75. 500	80,000	85, 500	91, 000	96. 500
48			72,000)	76, 000	81,000	86. 000	91, 500	97. 000
49			(22,500$)$	76, 500	81, 50×1	85, 600	92, 000	97, 500
60			(73. 500)	77, 000	82, 000	87, 000	92, 500	
61			(74, 0(0)	78, 000	82,500	88,000	93.000 93,500	98.500
52.			$(74,500)$ $(78,500)$	78.300 79,000	83,000 84,000	88,500 89,000	93,500 94,500	99,000 100,000
64.			(76,000)	80, 000	81, 500	89, 500	95, 000	100, 500
55			(76,500)	80, 500	85, 000	00,000	95, 510	101, 000
66			(77, 500)	81,000	85, 500	90, 500	98, 010	101.500
57			(78, 000)	81, 500	86.000	91, 000	96, 500	102. 000
88			(78, 500)	82.000	87.000	92, 000	97, 010	102, 500
59			$(79,500)$	83,000	87, 500	02.500 03,000	97,500 98,600	103.000 104,000
60.			$(80,000)$	83, 500	88,000	93,000	98, 600	104,000

${ }^{1}$ The perinissible loads aro computor to tho nearest 500 pounds. The moilification consists of ilmittur the maximuin load on nny singlo axie to 18,000 pounde (values in parcathesos nto fir 20,000 -pound axie fonds)
${ }^{2}$ The follow ing loniferl vehirles must not operate orer $1110-14$ brlifes: $3-32$ (5 nale) with whicelhase less than 36 fent; 2-S1-2 (5 axin) with wheciinse less than 42 feot; 3-3 (6 axlo) with wheelbase less than 44 feet; and 7-, 8-, and 9 -azle vehlces regardless of wheelthase.

Table 2. Permissible Gross Loads for Vehicles in Regular Operation. Bridge Table B Taken From Reference (5)

1 The permissible loads nto computad to the nenrest 800 pounds. The morincation consists In limiting the maximima load on my singlo nxie to 20,000 poutids.
 than 38 fect; 2-81-2 (8 sale) with wheelbase less than 45 feat; $3-3$ (6 axio) with wheelbnse less than 45 feet; and 7., 8, and 0 -arle vehleles regardicss of wheclbase.

Act of 1956 shall be apportioned to any State which does not permit the use of the National System of Interstate and Defense Highways within its boundaries by vehicles with a weight of twenty thousand pounds carried on any one axle, including enforcement tolerances, or with a tandem axle weight of thirty-four thousand pounds, including enforcement tolerances, or a gross weight of at least eighty thousand pounds for vehicle combinations of five axles or more. However, the maximum gross weight to be allowed by any State for vehicles using the National System of Interstate and Defense Highways shall be twenty thousand pounds carried on one axle, including enforcement tolerances, and a tandem axle weight of thirty-four thousand pounds, including enforcement tolerances, on a group of two or more consecutive axles produced by application of the following formula:

$$
W=500\left(\frac{L N}{N-I}+12 N+36\right)
$$

where W equals overall gross weight on any group of two or more consecutive axles to the nearest five hundred pounds, L equals distance in feet between the extreme of any group of two or more consecutive axles, and N equals number of axles in group under consideration, except that two consecutive sets of tandem axles may carry a gross load of thirty-four thousand pounds each providing the overall distance between the first and last axles of such consecutive sets of tandem axles is thirty-six feet or more: Provided, That such overall gross weight may not exceed eighty thousand pounds, including all enforcement
tolerances, except for those vehicles and loads which cannot be easily dismantled or divided and which have been issued special permits in accordance with applicable State laws, or the corresponding maximum weights permitted for vehicles using the public highways of such State under laws or regulations established by appropriate State authority in effect on July 1, 1956, except in the case of the overall gross weight of any group of two or more consecutive axles, on the date of enactment of the Federal-Aid Highway Amendments of 1974, whichever is the greater. Any amount which is withheld from apportionment to any State pursuant to the foregoing provisions shall lapse. This section shall not be construed to deny apportionment to any State allowing the operation within such State of any vehicles or combinations thereof which the State determines could be lawfully operated within such States on July 1, 1956, except in the case of the overall gross weight of any group of two or more consecutive axles, on the date of enactment of the Federal-Aid Highway Amendments of 1974. With respect to the State of Hawaii, laws or regulations in effect on February 1, 1960, shall be applicable for the purposes of this section in lieu of those in effect on July 1, 1956. With respect to the State of Michigan, laws or regulations in effect on May 1, 1982, shall be applicable for the purposes of this subsection.
"(b) No State may enact or enforce any law denying reasonable access to motor vehicles subject to this title to and from the Interstate Highway System to terminals and facilities for food, fuel, repairs, and rest."

These limitations are exactly the same as Table B, with the $80,000 \mathrm{lb}$ (355.8 kN) gross weight cap, except for the relaxation on the maximum weight of tandems spaced 36 ft (10.97 m) or more.

It is interesting to note that in the legislation of 1975 and 1982 no mention is made of the footnote restricting short, multiaxled vehicles on H15 bridges.

FATIGUE IN BRIDGES AND PAVEMENTS

The service lives of bridges and pavements are greatly affected by the ranges and number of applications of stresses to which they are subjected. A large body of information exists on the influences of these factors, and much of it comes from the AASHO Road Test conducted at Ottawa, Illinois in the period 1958-1962.(6) This knowledge is reflected in the AASHO Interim Guide for Design of Pavement Structures and the AASHTO Specifications for Highway Bridges. $(8,9)$

In the sections that follow, the reports of the AASHO Road Test and the AASHO guide for pavement design form the bases for the discussion of pavements. $(6,7,8)$ The same road test reports and other research reports, referred to as they appear below, form the bases for the discussion of bridges.

PAVEMENTS

The AASHO Road Test evaluated the performances of a number of designs of flexible and rigid pavements under repeated loads from single- and tandemaxle trucks of various weights. Data collected at periodic inspections were used to compare the performance of a pavement system under one load type to that of another type. From the mathematical relationships developed, the ratio of the number of passes of a standard loading to the number of passes of another loading to produce the same serviceability condition on the same pavement was determined. An $18-k i p(80.06 \mathrm{kN}$) single axle was selected as the standard, and the ratio was called the equivalent axle load factor (EAL). That factor is widely used in pavement design.

The number of axles in a set and the spacing of axles in that set influence pavement performance, but the AASHO test equations referred to above accounts for only single and tandem axles with no consideration for variable spacing. Work by Finney in 1973 indicated that pavement damage is minimized if tandem axles are spaced between 4 and $7 \mathrm{ft}(1.219$ and 2.134 m$)$, and that the most common spacing at that time was 42 to 54 in (1067 to 1372 cm). (11)

Although the AASHO equations are not developed for more than a two-axle set, the equations are extrapolated here to three- and four-axle bogies for purposes of comparing effects of multiple-axle loads. Figures 1 and 2 show the relationship between the EAL factor, axle load, and number of axles for one condition each of a flexible pavement and a rigid pavement.

Under the assumption that the extrapolation to multiple-axle sets is valid, figures 1 and 2 are used to determine how the equivalence factor, and hence pavement deterioration, is affected by increasing the loading by 30%. This percentage is selected to agree with the 30% overstress of H 15 bridges referred to earlier in this report. Table 3 shows that the equivalence factor is increased in both the particular flexible and rigid pavement treated. The destructive effect of a 30 percent increase in load is slightly greater on the flexible pavement than on the rigid pavement. The effct is a little greater for the tandem axle load than for any other, but the difference is small. Although the actual percentages might differ considerably from these because of the type and weight spectrum of truck traffic and the type and maintenance of the pavement structure, it is clear that pavement life would be decreased by heavier truck axles.

BRIDGES

The most common types of beams used in the interstate highway system are steel I-beam and plate girder, reinforced concrete, and prestressed concrete. The deck slabs are almost all of reinforced concrete. The AASHO Road Test included all of these bridge types in test runs, and supplementary tests on steel and concrete articles were made in laboratories. Numerous tests, not associated with the AASHO Road Test, on the relationship of stress range and repetitions have been made and reported. The data gathered in these field and laboratory tests has expanded the knowledge and understanding of fatigue in materials, and has influenced AASHTO to include fatigue design in the highway bridge design specifications. $(9,10)$

The sections that follow give information on the general behavior of steel and concrete under repeated stresses, and how the life of a bridge might be affected by that behavior.

Figure 1. Equivalent Axle Load Factor vs. Axle Load, Flexible Pavement, SiN $=6, p=2.5^{(7)}$

Figure 2. Equivalent Axle Load Factor vs. Load, Rigid Pavement, $D=8 \mathrm{in}, \mathrm{p}=2.7^{(7)}$

Table 3. Effect of a Thirty Percent Increase in Axle Load on Equivalent Axle Load Factors of Two Pavements

Line									
1	Pavement Type	Flexible				Rigid			
2	Number of Axles	1	2	3	4	1	2	3	4
3	Total W(kips) for EAL=1	18	34	48	62	18	29	39	47
4	$1.3 \times$ Line 3	23	44	62	81	23	38	50	61
5	EAL for Line 4	2.9	3.3	3.0	3.1	2.7	3.0	2.8	2.8
6	Percentage Decrease in Pavement Life Due to 30\% Increase in W $\left(1-\frac{1}{\text { Line } 5}\right) \times 100$	65	70	67	68	63	67	64	64
7	Current Formula	20	34	42	50	20	34	42	50
8	Proposed Formula	20	34	42	46	20	34	42	46

$$
\begin{aligned}
W & =\text { Load in kips on the Axle Set } \\
E A L & =\text { Equivalent Axle Load Factor }
\end{aligned}
$$

Data from figures 1 and 2
$1 \mathrm{kip}=4.448 \mathrm{kN}$

Concrete Bridges

Concrete is able to undergo an unlimited number of stress repetitions provided that the stress does not exceed 50% of its static strength. (11) This applies, so far as it is currently known, for both tension and compression. Compressive strength is of major concern in reinforced and prestressed concrete bridges, and tension (modulus of rupture) is of major concern in rigid pavements. Figure 3 shows the relationship of modulus of rupture to number of stress cycles to failure, $\mathrm{S}-\mathrm{N}$ curve, developed from flexural tests on plain concrete.

The tensile stresses in concrete bridge elements are carried by reinforcing or prestressing steel, and fatigue of these steels is of concern. S-N curves shown in figures 4 and 5 indicate that an unlimited number of stress cycles can be carried by reinforcing steel with a stress range (SR) not exceeding about 24 ksi (165.5 MPa), and by prestressing steel with a stress range not exceeding some 9.7 ksi (66.88 MPa) for 270 ksi (1861 MPa) prestressing steel. The AASHTO bridge specifications (9) permit 24 ksi (165.5 MPa) tensile stress in grade 60 reinforcing steel,

$$
\begin{equation*}
f(L L+I)+f_{D L}=24 \mathrm{ksi}(165.5 \mathrm{MPa}) \tag{2}
\end{equation*}
$$

The ratio of $f(L L+I)$ to $f D L$ will vary with the bridge type, span, and live load, but if (LL+I) accounts for 50 percent of the total stress for purposes of illustration, then

$$
f(L L+I)=f_{D L}=24 \quad 2=12 \mathrm{ksi}(82.74 \mathrm{MPa})
$$

Now, if the live load is increased to make $f(L L+I) 30$ percent greater, then

$$
1.3 \mathrm{f}(\mathrm{LL}+\mathrm{I})+\mathrm{f}_{\mathrm{DL}}=12(1.3+1)=27.6 \mathrm{ksi}(190.3 \mathrm{MPa})
$$

and

$$
S R=27.6-12=15.6 \mathrm{ksi} \quad(93.77 \mathrm{MPa})
$$

This $15.6 \mathrm{ksi}(93.77 \mathrm{MPa})$ range is much less than the fatigue limit of

Figure 3. S-N Curves for Plain Concrete Beams (12)

Figure 4. S-N Curves for Concrete Reinforcing Steel $(6,13)$

Figure 5. Derived S-N Curve for 7-Wire Strand Prestressing Steel ${ }^{(14)}$
figure 4, and there would be no measurable reduction in the total number of axle loads caused by the 30 percent increase in live load plus impact. The bridge specifications do not permit a design to a stress range of 24 ksi (165.5 MPa) since the maximum allowable total stress is 24 ksi (165.5 MPa).

Bridges with no floor system, beam and girder bridges, have reinforced concrete deck slabs reinforced transverse to traffic, and the bridge specifications do not require a fatigue analysis of these slabs. The deck slab of a bridge with a floor system is reinforced parallel to traffic and fatigue analysis is required. There are no fatigue problems in a properly reinforced slab on either of these two deck systems. Punch-through failures have occurred in bridge decks, but if the deck concrete is of good quality and in good condition there is no danger of such a failure.

There were no failures in either the pretensioned or the posttensioned concrete beams tested through some 556,000 vehicle passes in the AASHO Road Test. (7) Using the $S-N$ curve for 7 -wire prestressing strand tested in air shown in figure $5(14), 270 \mathrm{ksi}(1861 \mathrm{MPa})$ as ultimate strength, fpu, and live load plus impact design stress of 4 ksi (27.58 MPa), then the stress range divided by the ultimate strength, $S R / f$ pu equals $4 / 270=0.015$. This ratio is far less than $S R / f$ pu of 0.036 at which an unlimited number of cycles could be applied without failure. An increase of 30 percent in $f(L L+I)$ gives an $S R / f_{p u}$ ratio of $1.3 \times 4 / 270=0.019$, still far less than the fatigue limit. From this it can be said that there is little, if any, danger of fatigue failure of steel in pretensioned beams. It is, however, almost certain that flexural cracks will develop in the bottom of the beams, and the state of stress at a crack is complicated. These cracks in the AASHO Road Test bridges were small in the beams stressed below half of tensile strength of concrete.

Steel Beam Bridges
I-beam bridges without cover plates developed no beam damage in the AASHO Road Test, but weld cracks developed at about one-half million vehicle passes in beams with partial cover plates.(7) In most of the beams, $\mathrm{f}(L L+I)$ was about the same as $\mathrm{f} L$, some $14 \mathrm{ksi}(96.53 \mathrm{MPa})$, and the range of stresses varied between 12 to 15 ksi (82.74 to 103.4 MPa), approximately.

An S-N curve, developed from laboratory tests which supplemented the AASHO field tests, is shown in figure 6. At $N=2,000,000$ and minimum stress of $14 \mathrm{ksi}(96.53 \mathrm{MPa}$), it is found that the stress range is approximately 9.4 ksi (64.81 MPa) -- some 75 percent of the range in the field test. With minimum stress $=14 \mathrm{ksi}(96.53 \mathrm{MPa})=\mathrm{f}_{\mathrm{DL}}$, and an increase of 30 percent in ${ }^{f}(L L+I)$, then the stress range $=1.3 \times 9.4=12.2 \mathrm{ksi}(84.12 \mathrm{MPa})$, and the number of truck passages from figure 6 is $1,600,000$. This is 80 percent of the life at the $9 \mathrm{ksi}(62.06 \mathrm{MPa})$ stress range, a 20 percent reduction.

Average daily truck traffic, ADTT, often exceeds 10 percent of the total traffic, ADT, and this could amount to more than 1000 trucks per day. At this rate, the life at $S R=9 \mathrm{ksi}(62.05 \mathrm{MPa})$ would be about $5 \mathrm{l} / 2$ years, and at $S R=1.3 \times 9 \mathrm{ksi}(62.05 \mathrm{MPa})$, the life would be about 4 years, assuming that the same path were used by each vehicle. A long life can be designed into a bridge in the planning stage, but once a bridge is built, it is not possible to meet higher demands without major revisions.

CORROSION FATIGUE
Weldments, reinforcing bar deformations, and corrosion damage provide discontinuities that. concentrate and amplify stresses. Aggressive environments such as deicing salt runoff and industrial gasses promote corrosion which sometimes creates stress raisers. Very high stresses can cause cracks to develop even under static load conditions, but the development is accelerated by cycled stress. Once started, such a crack will grow relatively slowly until a critical condition is reached, at which time rapid growth sets in and failure eventually develops. (15)

Laboratory tests on concrete beams reinforced with hot-rolled steel were made in air and partially submerged in salt water. The S-N curves of the tests are shown in figure 7. All of the bars in the beams tested in air fatigued at the roots of deformations -- geometric stress raisers -- while at least some of those tested in the corrosive environment of salt water failed

Figure 6. S-N Curve for Steel. Beam with Partial Cover Plate (6, Report 4)

Figure 7. S-N Curves for Beams Reinforced with Hot Rolled Bar ${ }^{(16)}$
from cracks initiated in other regions.(18) This indicates that corrosion was responsible for the initiation of some of the cracks.

In order to get some idea of the influence of stress magnitude on the life of the beams tested in the corrosive environment, the 30 percent increase in live load plus impact used in preceding sections is applied here. In the figure, when $f(L L+I)$ at 10 million cycle life is increased by 30 percent, the life is reduced to approximately 3.6 million cycles, a 64 percent decrease in the 10 million cycle life. As in the earlier example, a 1000 ADTT would have the life reduced from 27 years to about 10 years.

SUMMARY

The service lives of bridges and pavements are greatly affected by the types, weights, and numbers of vehicles that are carried over them. Various research findings give quantitative information that enables one to estimate the service life of these highway structures in terms of the traffic carried. In the design phase, the projected life can be increased by decreasing certain design stresses, but an existing structure cannot be easily changed to reduce fatigue damage from heavier traffic.

A 30 percent increase in load was selected in the illustrations to demonstrate how pavement and bridge lives are changed by the increase. For the pavement structures selected, the life of both the flexible and rigid pavements was reduced by approximately $2 / 3$ by this load increase. The life of AASHO Road Test concrete bridges was not reduced measurably by the stress increase, but it was shown that corrosion fatigue might cause a considerable reduction in service life. Cover plated steel beam bridges might suffer about 20% reduction in traffic life by the stress increase.

On the basis of these studies of bridge elements and pavement structures, the fatigue life of pavements places a greater restriction on load limits than does that of the bridge elements. From the point of view of fatigue, pavements should control the permissible weight of single axles, tandem axles, and other very short axle groups.

LIVE LOADS TO CAUSE SPECIFIED STRESS RATIOS

DEAD LOAD RATIOS FOR VARIOUS BRIDGE DESIGNS

Data for dead load stress ratios has been collected from various sources. NCHRP Report 141 presents(17) these ratios for simple span AASHTO bridges designed for H15, HS15, H2O, and HS2O vehicles. Both shear and moment ratios are presented. Data was also collected from the Texas SDHPT for moment stress ratios for noncomposite simple spans. Also, the FHWA has provided data from which moment ratios have been calculated.

Not so much information was found for dead load ratios of steel-concrete composite bridges. Data from U.S. Steel's Highway Structures Design Handbook was obtained and is reported.(18)

Tables 4 to 7 present the data for dead load ratios of noncomposite bridges in the form of $\mathrm{DL} /(\mathrm{LL}+\mathrm{I})$. This data is presented graphically in figures 8 to 11. For purposes of calculation of critical vehicle weights to cause specified overstresses, the critical values of the reported dead load ratios are the minimum values, or the lower bound of the reported data. Approximate lower bounds, in the form of piecewise linear functions of span length, of the reported data were determined and are plotted in figures 12 to 15. These curves are reported also in figures 16 and 17 in the form of DL/TL = DL/(DL+LL+I).

Table 8 and figures 18 and 19 present the limited data for the dead load ratios, in the form of $\mathrm{DL} /(\mathrm{LL}+\mathrm{I})$, for steel-concrete composite bridges. The data represent continuous multispan structures of various span lengths and is based on the length of the span within which the critical, or lowest, dead load ratio occurs. All data is for HS20 or greater design loadings. This data is presented for information only and has not been used in the calculations which follow.

Table 4. Dead Load Moment Ratios $\mathrm{DL} /(\mathrm{LL}+1)$-- HS2O Bridges

$\begin{aligned} & \text { Span } \\ & (\mathrm{ft}) \end{aligned}$	Texas SDHPT Simple Spans				$\frac{\text { NCHRP } 141}{\text { StI Gird }}$	$\frac{\text { FHWA }}{\text { AIT }}$
	RC Slab	Panform	Steel I	PC Beams		
10	0.111					0.125
15	0.221					
20	0.375					0.256
25	0.558					
30	0.712	0.460			0.380	0.313
35	0.895				0.415	
40	1.204	0.630	0.430	0.617	0.450	0.402
45			0.463	0.655	0.490	
50			0.499	0.698	0.530	0.472
55			0.540	0.744	0.575	
60			0.586	0.792	0.620	0.562
65			0.635	0.842	0.670	
70				0.892	0.720	0.667
75				0.944	0.785	
80				0.996	0.850	0.729
85				1.049	0.925	
90				1.102	1.000	0.827
95				1.156	1.070	
100				1.211	1.140	0.930
105					1.200	
110					1.260	1.049
115					1.315	
120					1.370	1.175
125					1.410	
130					1.450	1.273
135					1.495	
140				.	1.540	1.410
150						1.508

Table 5. Dead Load Shear Ratios DL/(LL+I) -- HS2O Bridges

Span (ft)	NCHRP Report 141				
10	Conc STab	Conc Box	Conc Tee	StT Gird	PC Gird
20	0.15				
30	0.33			0.22	
40	0.61	0.30	0.32	0.27	0.45
50	1.17	0.55	0.50	0.34	0.52
60		0.80	0.72	0.43	0.67
70		1.03	0.95	0.52	0.87
80		1.26	1.19	0.62	1.17
90		1.53	1.46	0.73	1.48
100		1.78	1.79	0.83	1.85
10		2.04	2.09	0.94	
120		2.24	2.42	1.09	
130		2.52		1.20	
		2.80		1.34	

Table 6. Dead Load Moment Ratios DL/(LL+I) -- H 15 Bridges

Span$(f t)$	Texas SDHPT Simple Spans				$\frac{\text { NCHRP } 141}{\text { Stl Gird }}$	$\frac{\text { FHWA }}{\text { A1I }}$
	RC Slab	Panform	Steel I	PC Beams		
10	0.147					0.863
15	0.294					
20	0.500					0.342
25	0.771					
30	1.085	0.700			0.500	0.515
35	1.455					
40	2.087	1.090	0.651	0.811	0.670	0.723
45			0.741	0.997		
50			0.827	1.101	0.840	0.855
55			0.921	1.389		
60			1.006	1.476	1.010	1.024
65			1.068	1.542		\because
70				1.604	1.150	1.158
75				1.661		
80				1.715	1.280	1.229
85				1.766		
90				1.814	1.400	1.333
95				1.860		
100				1.903	1.500	1.443
105						
110					1.590	1.557
115 120					1.670	1.669
125						
130					1.740	
135						
140					1.800	1.860
150						

Table 7. Dead Load Shear Ratios DL/(LL+I) -- H 15 Bridges

Span (ft)	NCHRP Report 141				
	Conc Stab	Conc Box	Conc Tee	Stl Gird	PC Gird
10				0.43	
20	0.50		0.60	0.48	
30	1.07	0.78	0.81	0.55	0.60
40	1.82	1.03	1.10	0.63	0.73
50		1.30	1.40	0.72	0.94
60		1.55	1.55	0.82	1.25
70		1.82	1.82	0.91	1.60
80		2.09	2.09	1.02	2.00
90		2.32	2.32	1.13	2.40
100		2.62	2.62	1.28	
110		2.88	2.88	1.37	
120		3.15	3.15	1.51	
130		3.41	3.41	1.63	
140		3.57	3.57	1.76	

$1 \mathrm{ft}=0.3048 \mathrm{~m}$

Figure 3. Dead Load Moment Ratios DL/(LL+I) for Simple Span, Noncomposite HS2O Bridges

Figure 9. Dead Load Shear Ratios DL/(LL+I) for Simple Span, Noncomposite HS20 Bridges

Figure 10. Dead Load Moment Ratios DL/(LL+I) for Simple Span, Noncomposite H15 Bridges

Figure 11. Dead Load Shear Ratios $\mathrm{DL} /(\mathrm{LL}+\mathrm{I})$ for Simple Span, Noncomposite H15 Bridges

Figure 12. Idealized Moment Ratios $\mathrm{DL} /(\mathrm{LL}+\mathrm{I})$ for HS2O Bridges

Figure 13. Idealized Shear Ratios DL/(LL+I) for HS2O Bridges

Figure 14. Idealized Moment Ratios DL/(LL+I) for H15 Bridges

Figure 15. Idealized Shear Ratios DL/(LL+I) for H15 Bridges

Figure 16. Dead Load Moment Ratios DL/(DL+LL+I) for H15 and HS20 Bridges

Figure 17. Dead Load Shear Ratios DL/(DL+LL+I) for H15 and HS20 Bridges

Table 8. Dead Load Ratios DL/(LL+I) -- HS20 Bridges

```
Composite Welded Plate Girders
"Highway Structures Design Handbook
Vol. II. Application Examples"
United States Steel Corp. (From Reference 18)
```

SPAN	MOMENT		SHEAR	
(ft)	B1	B2	B1	B2
80	0.658	0.121	0.603	0.111
100	0.555	0.102	0.574	0.106
100	0.458	0.100	0.574	0.106
128	0.351	0.186		
273	0.839	0.257	1.403	0.318

$1 \mathrm{ft}=0.3048 \mathrm{~m}$

Figure 18. Dead Load Moment Ratios DL/(LL+I) for Continuous, Composite Welded Plate Girders -- HS2O

Figure 19. Dead Load Shear Ratios DL/(LL+I) for Continuous, Composite Welded Plate Girders -- HS2O

CALCULATION OF SERVICE LOADS TO CAUSE SPECIFIED STRESS RATIOS

 Bridges Designed by the Working Stress Design (WSD) ProcedureAs discussed above, data for dead load moment and shear ratios was collected for H15 and HS2O designed bridges. These moment and shear dead load stress ratios are tabulated and plotted in the preceding section in the form of

$$
\begin{equation*}
B=D L /(L L+I) \tag{3}
\end{equation*}
$$

Also shown are piecewise linear models representing the lower bounds, or the most critical values, of the stress ratios versus span length. These piecewise linear simplifications can be used in calculations of overstress ratios for various axle configurations.

Ratios of $D L /(D L+L L+I)$ or $L L /(D L+L L+I)$ can be expressed in terms of the given B ratios using the following identities:

$$
\begin{gather*}
D L / T L=B /(1+B) \tag{4}\\
(L L+I) / T L=1 /(1+B) \tag{5}
\end{gather*}
$$

where $T L=D L+L L+I$ is the total design load. Plots of $D L / T L$ are shown in figures 16 and 17.

For simple span, noncomposite bridges designed by the working stress design (WSD) method, these B ratios can be used to calculate an allowable live load (LL+I) shear \bar{V}_{L} or moment \bar{M}_{L} for a specified allowable overstress ratio as follows:

$$
\begin{align*}
& \bar{M}_{L}=M_{L}\left[\Omega+(\Omega-1) B_{M}\right] \tag{6}\\
& \bar{V}_{L}=V_{L}\left[\Omega+(\Omega-1) B_{V}\right] \tag{7}
\end{align*}
$$

where M_{L} is the design (LL+I) moment,
V_{L} is the design ($L L+I$) shear,
B_{M} is the $\mathrm{DL} /(L L+I)$ moment ratio,
B_{V} is the $\mathrm{DL} /(L L+\mathrm{I})$ shear ratio, and
Ω is the specified overstress ratio.

Bridges Designed by the Load Factor Design (LFD) Procedure
Since 1973 the load factor design (LFD) procedure has been used to design increasing numbers of highway bridges. The LFD bridges are still certainly in the minority, and the LFD method may never completely replace the working stress design (WSD) procedure for design of highway bridges, but the economics of the LFD procedure are most likely to be beneficial to long span structures where the dead load ratios are the greatest. The use of the LFD method will result in lower dead load ratios however, and because the proposed truck weight formula is based on a lower bound of the dead load ratios of data collected mostly from WSD bridges, the effects of the proposed truck weight formula on LFD bridges must be evaluated.

First, a summary of the LFD method, as applied to highway bridges, is appropriate. The LFD method is outlined in the AASHTO Standard Specifications ${ }^{(9)}$, article 1.2.22, and sections 1.5 and 1.7. It can be briefly summarized as follows for main structural members made of steel or reinforced concrete:

Steel Structures

Strength Considerations:
Maximum Design Load: Internal resultants due to

$$
1.3(\mathrm{DL}+1.67(\mathrm{LL}+\mathrm{I}))<\text { Strength }
$$

For bridges designed for trucks lighter than $H 2 O$, the resultants due to the following factored loads (without concurrent loading of adjacent lanes) are also checked against the factored strength:

$$
1.3(D L+2.20(L L+I))
$$

Serviceability Considerations:
Service Load: Stress due to $D L+(L L+I)$ < Allowable stress for repeated loadings
and Stress due to $(L L+I)<$ Allowable stress range

$$
\begin{aligned}
\text { Overload: Stress due to } \mathrm{DL}+1.67(\mathrm{LL}+\mathrm{I})< & \text { Stress causing } \\
& \text { permanent deforma- } \\
& \text { tions }
\end{aligned}
$$

Concrete Structures

Strength Considerations:
Maximum Design Load: Internal resultants due to 1.3(DL+1.67(LL+I) < Factored strength (strength factors vary from 0.7 to 0.9)

For bridges designed for trucks lighter than H 20 , the resultants due to the following factored loads (without concurrent loading of adjacent lanes) are also checked against the factored strength:

$$
1.3(D L+2.20(L L+I))
$$

Serviceability Considerations:
Service Load: Stresses in concrete and reinforcement due to DL+(LL+I) < Allowable stresses for repeated loads
Deflections due to DL+(LL+I) < Allowable deflections

The proposed truck weight limiting formula has been developed based on an analysis of the critical weights of various vehicles on typical WSD bridges, therefore the effects of increased truck weights on LFD bridges must be considered separately.

The effect of a proposed formula which might allow higher truck weights is to cause higher service loading for an LFD structure. Since the procedure for LFD for service loading is identical to the WSD procedure, trucks which cause a 5\% overstress in HS2O WSD bridges will not cause more than a 5\% increase in the design service stress in an HS20 LFD bridge. The factor of safety against ultimate capacity for the two bridges under the same truck
will in general be different, however. The occasional overload provision of the LFD procedure will not be violated as long as the ratio of the overload (LL+I) moment (caused by a legal truck under a proposed new formula) to the design (LL+I) moment (caused by the design truck) does not exceed 5/3.

Composite Steel-Concrete Bridges
The effects of a proposed formula which might allow higher truck weights on composite bridges is to increase the service load stresses on the composite section. The expressions for the maximum allowable overload moment, i.e., that moment which causes a specified overstress ratio, are as follows:
$\bar{M}_{L}=M_{L}\left[\Omega+(\Omega-1) B_{2}+(\Omega-1)\left(\mathrm{S}_{\mathrm{b} 2} / \mathrm{S}_{\mathrm{b} 1}\right) \mathrm{B}_{1}\right]$
for stresses at the top of the composite section. In these two expressions,
\bar{M}_{L} is the allowable overload (LL+I) moment,
M_{L} is the design ($L L+I$) moment, .
Ω is the specified overstress ratio (i.e., 1.05 for HS20 bridges),
B_{1} is the ratio of $\mathrm{DL} /(L L+1)$ for the DL_{1}, which acts only on the noncomposite section, due to the girders and deck,
B_{2} is the ratio of the $D L /(L L+I)$ for the superimposed L_{2}, which acts on the composite section, due to the curbs, wearing surface, etc.,
$S_{b 1}$ is the noncomposite bottom fiber section modulus, and
$S_{b 2}$ is the composite bottom fiber section modulus.

RATIONALE FOR THE FORMULA

Consider a given load distributed equally among a specified number of wheels, N, equally spaced along a simply supported beam assuming that the beam span is greater than the outside dimension of the wheels. As the number of wheels increases, so does the maximum moment. Taken to the limit, this means that the maximum moment occurs at the center of the beam as the number of wheels approaches infinity, i.e., a uniform load.

With this rationale in mind, uniform loads with overall lengths varying in $1 \mathrm{ft}(0.3048 \mathrm{~m})$ intervals were placed on simple spans having the dead load to design load ratios shown in figure 16 for moment and figure 17 for shear. The magnitude of the uniform load required to cause a moment (or shear) equal to or greater than 1.05 times that used for the design of an HS20 bridge and 1.3 times that used for the design of an H 15 bridge was calculated. This calculation was made for each span and resulted in curves such as those shown in figure 20 , one for the HS2O and one for the H15. Figure 20 illustrates the calculation for a $24 \mathrm{ft}(7.315 \mathrm{~m})$ uniform load; but the same calculations were made, in $1 \mathrm{ft}(0.3048 \mathrm{~m})$ intervals, for all load lengths from 8 to 120 $\mathrm{ft}(2.438$ to 36.58 m$)$. These calculations and curves result in a unique critical span for each condition. This critical span defines the maximum uniform load of the given length that can be allowed. Any greater load would cause the stress ratios of 1.05 or 1.3 to be exceeded in the respective critical spans.

These maximum uniform loads were then plotted as a function of their lengths. See figure 21. It is interesting that H15 bridges with the 1.3 factor control the maximum uniform loads up to near $70 \mathrm{ft}(21.34 \mathrm{~m})$, but that HS20 bridges with the smaller 1.05 factor control the longer load lengths. This occurs because long bridge spans control the total load on long wheelbases (uniform loads). As the dead load to total load ratios become large, the 1.3 factor applied to the H15 live load moment becomes larger than the 1.05 increase in the HS20 live load moment. Although this result has several implications, the most important is that consideration of HS20 bridges would be the primary criterion for the gross weight of the very

Figure 20. The Maxirium Uniform Load, 24 ft (7.32 m) Long, Required to Cause the Specified Ratios of Design Moments on Simple Bridge Spans. Note that a $33 \mathrm{ft}(10.06 \mathrm{~m})$ Span is Critical for an HS2O Bridge, while a 57 ft (17.37 m) Span is Critical for an H75 Bridge

Figure 21. The Maximum Uniform Loads, as a Function of Load Length, Defined by the Stress Ratio. Note that H15 Bridges are Critical for Vehicle Lengths up to $67 \mathrm{ft}(20.42 \mathrm{~m})$, but HS20 Bridges are Critical for the Longer Lengths
long vehicles should they ever be allowed. These maximum uniform loads provided the bases for the truck formula being suggested.

PROPOSED BRIDGE FORMULA

The maximum uniform load curves were used as a guide to draw the two straight lines of figure 22. The equation of each straight segment and the wheelbases over which they are valid are

$$
\begin{aligned}
& W=(34+L) 1000 \mathrm{lb} \quad 8 \mathrm{ft} \leq \mathrm{L} \leq 56 \mathrm{ft}(2.438 \mathrm{~m} \leq \mathrm{L} \leq 17.07 \mathrm{~m}) \\
& W=(62+\mathrm{L} / 2) 1000 \mathrm{lb} \quad 56 \mathrm{ft} \leq \mathrm{L} \quad(17.07 \mathrm{~m} \leq \mathrm{L})
\end{aligned}
$$

where $W=$ total weight in lb over a wheelbase L in $f t$.
A table, based on the two straight line formula, has been completed. See table 9. The maximum weights for any group of axles up to a wheelbase of $120 \mathrm{ft}(36.58 \mathrm{~m})$ are shown in thousands of pounds. As implied by the term "bridge formula", these allowable weights are equally applicable to all the wheels under a truck or to any subgroup of axles using the outside dimension of the subgroup as the length.

This formula does not guarantee that the prescribed bridge stresses will never be exceeded. Some of the examples shown below clearly illustrate truck configurations that will be legal yet cause more than 1.3 times the H15 bridge design stresses. Other examples show that some legal trucks can cause stresses slightly greater than 1.05 times the HS20 design stresses. However, it is believed these exceptions represent rare vehicular configurations and that the suggested formula is an improvement from the standpoint of utilizing, but not abusing, the nation's bridges.

The enforcement of the proposed formula should be easier than Table B primarily because the number of axles is not a factor. Associated with the out-to-out length of any group of wheels is a specific gross weight. It is, of course, implied that the single and tandem axle maximums may not be exceeded. The 5 percent average allowed for the design stress of the HS2O bridges further implies an allowance for weighing errors and inadvertent load shifting, thus making the formula loads absolute maximums.

ASSUMPTIONS
The calculations leading to the two straight line formula all assume the following conditions in consonance with the AASHTO Bridge Specification. (9)

Figure 22. The Proposed Bridge Formula Compared to the Derived Haximum Uniform Loads that Cause the Specified Overstresses (1.05 for HS2O, 1.3 for H15 Bridges)

Table 9. Permissible Loads Based on Proposed Formula

Wheelbase (ft)	2	3	4	$\begin{gathered} \text { Number of Axles } \\ 5 \\ \hline \end{gathered}$			8	9
4	34.0							
5	34.0				$\mathrm{W}=34+\mathrm{L}$		$8 \leq L \leq 56 \mathrm{ft}$	
6	34.0				$\hat{W}=62$			
7	34.0		except for		$\mathrm{N}=2$		$\mathrm{L} \geq 56 \mathrm{ft}$	
8	34.0	42.0						
9	39.0	43.0						
10	40.0	44.0						
11		45.0						
12		46.0	46.0					
13		47.0	47.0					
14		48.0	48.0					
15		49.0	49.0				1 ft	0.3048 m
16		50.0	50.0	50.0			1000 lb	4.448 kN
17		51.0	51.0	51.0				
18		52.0	52.0	52.0				
19		53.0	53.0	53.0				
20		54.0	54.0	54.0	54.0			
21		55.0	55.0	55.0	55.0			
22		56.0	56.0	56.0	56.0			
23		57.0	57.0	57.0	57.0			
24		58.0	58.0	58.0	58.0	58.0		
25		59.0	59.0	59.0	59.0	59.0		
26		60.0	60.0	60.0	60.0	60.0		
27		60.0	61.0	61.0	61.0	61.0		
28		60.0	62.0	62.0	62.0	62.0	62.0	
29		60.0	63.0	63.0	63.0	63.0	63.0	
30		60.0	64.0	64.0	64.0	64.0	64.0	
31		60.0	65.0	65.0	65.0	65.0	65.0	
32		60.0	66.0	66.0	66.0	66.0	66.0	66.0
33			67.0	67.0	67.0	67.0	67.0	67.0
34			68.0	68.0	68.0	68.0	68.0	68.0
35			69.0	69.0	69.0	69.0	69.0	69.0
36			70.0	70.0	70.0	70.0	70.0	70.0
37			71.0	71.0	71.0	71.0	71.0	71.0
38			72.0	72.0	72.0	72.0	72.0	72.0
39			73.0	73.0	73.0	73.0	73.0	73.0
40			74.0	74.0	74.0	74.0	74.0	74.0
41			75.0	75.0	75.0	75.0	75.0	75.0
42			76.0	76.0	76.0	76.0	76.0	76.0
43			77.0	77.0	77.0	77.0	77.0	77.0
44			78.0	78.0	78.0	78.0	78.0	78.0
45			79.0	79.0	79.0	79.0	79.0	79.0

Table 9. Permissible Loads Based on Proposed Formula (continued)

Wheelbase (ft)	23	4	$\begin{gathered} \text { Number } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \text { of } A x \\ \quad 6 \\ \hline \end{gathered}$	7	8	9
46		80.0	80.0	80.0	80.0	80.0	80.0
47		80.0	81.0	81.0	81.0	81.0	81.0
48		80.0	82.0	82.0	82.0	82.0	82.0
49		80.0	83.0	83.0	83.0	83.0	83.0
50		80.0	84.0	84.0	84.0	84.0	84.0
52		80.0	86.0	86.0	86.0	86.0	86.0
54		80.0	88.0	88.0	88.0	88.0	88.0
56		80.0	90.0	90.0	90.0	90.0	90.0
58			91.0	91.0	91.0	91.0	91.0
60			92.0	92.0	92.0	92.0	92.0
62			93.0	93.0	93.0	93.0	93.0
64				94.0	94.0	94.0	94.0
66				95.0	95.0	95.0	95.0
68				96.0	96.0	96.0	96.0
70				97.0	97.0	97.0	97.0
72				98.0	98.0	98.0	98.0
74				99.0	99.0	99.0	99.0
76				100.0	100.0	100.0	100.0
78				101.0	101.0	101.0	101.0
80				102.0	102.0	102.0	102.0
82				103.0	103.0	103.0	103.0
84				104.0	104.0	104.0	104.0
86				105.0	105.0	105.0	105.0
88				106.0	106.0	106.0	106.0
90				107.0	107.0	107.0	107.0
92				108.0	108.0	108.0	108.0
94				109.0	109.0	109.0	109.0
96				110.0	110.0	110.0	110.0
98				111.0	111.0	111.0	111.0
100				112.0	112.0	112.0	112.0
102				113.0	113.0	113.0	113.0
104				114.0	114.0	114.0	114.0
106				115.0	115.0	115.0	115.0
108				116.0	116.0	116.0	116.0
110				117.0	117.0	117.0	117.0
112				118.0	118.0	118.0	118.0
114				119.0	119.0	119.0	119.0
116				120.0	120.0	120.0	120.0
118				120.0	121.0	121.0	121.0
120				120.0	122.0	122.0	122.0
	$\begin{aligned} & W=34+L \\ & W=62+L / 2 \\ & N=2 \end{aligned}$	$\begin{aligned} 8 \leq L & \leq 56 \mathrm{ft} \\ \mathrm{~L} & \geq 56 \mathrm{ft} \end{aligned}$			$\begin{aligned} 1 \mathrm{ft} & =0.3048 \mathrm{~m} \\ 1000 \mathrm{lb} & =4.448 \mathrm{kN} \end{aligned}$		
except							

- The impact factor

$$
\begin{gather*}
I=\frac{50}{L+125} \tag{11}\\
I=0.3 \text { for } L \geq 41.67 \mathrm{ft}(12.71 \mathrm{~m})
\end{gather*}
$$

where I is the fractional increase of the live load due to impact and L is the span length in feet.
o In width, only one truck per lane is allowed. For longer spans each lane is considered to have a truck train with the same characteristics that led to the AASHTO design lane loadings.
o The side by side spacing of adjacent vehicles is considered to be $4 \mathrm{ft}(1.219 \mathrm{~m})$. Further, in the case of a curb, the spacing to the center of the wheel(s) is $2 \mathrm{ft}(0.6096 \mathrm{~m})$.
0 The distribution of the wheel loads to longitudinal stringers, whether steel or concrete, was assumed to be that recommended by the Design Specification for both moment and shear. Many consider these distributions to be overly conservative, but they represent current design practice.

To examine the possible implications of the new formula a table, identical in format to table 9, was constructed showing the differences from the current truck weight formula. This tabulation, table 10 , simply shows the changes, in thousands of pounds, from the current STAA bridge weight law to that being suggested as the replacement. Numbers in parentheses mean that the new formula allows less weight; all others, more weight.

For axle groupings and wheelbases of three or less axles there is no reduction in the maximum weight, but for short coupled groupings of four or more axles there are significant reductions. These reductions are not without good reason. Virtually without exception the weights allowed by Table B on the short-coupled groupings of four or more axles exceed the tolerable stresses in H15 bridges. This is exactly the phenomenon recognized in the long forgotten footnote to the original Table B. (5)

OBSERVED AXLE GROUP WEIGHTS
Tapes of data collected in 1983 reflecting the results of loadometer surveys performed by several States in cooperation with the Federal Highway Administration were obtained for analysis and comparison with the proposed formula. These data include information defining the type of truck and the weights and spacings of the individual axles. This made it possible to easily tabulate the weights of all axle groupings, i.e., all single axles and groups of two axles, three axles, four axles, and five axles. The details of this procedure are described in Appendix B. But for clarity it is reiterated that these groupings are observations from all vehicles, not just those with the specified number of axles. For example, a vehicle with three total axles yields two data points in the two-axle group, the first and second axle and the second and third axle.

These tabulations were summarized in increments of length of $8 \mathrm{ft}(2.438$ $\mathrm{m})$ and in increments of weight of $10,000 \mathrm{lb}(4.448 \mathrm{kN})$. Tables 11 to 14 show the results. Superposed over the tables are lines showing both the current Formula B, for the specified number of included axles, and the proposed formula, which is, of course, independent of the number of included axles.

Table 10. Changes in Allowable Weights, in Thousands of Pounds, from Formula B (Current Law) to the Proposed Formula.

		Number of Axles			
Wheelbase	3	4	5	6	7

4					$\begin{aligned} 1 \mathrm{ft} & =0.3048 \mathrm{~m} \\ 1000 \mathrm{lb} & =4.448 \mathrm{kN} \end{aligned}$	
6						
8	(0.00)*					
10	0.50					
12	1.00	(4.00)				
14	1.50	(3.33)				
16	2.00	(2.67)	(8.00)			
18	2.50	(2.00)	(7.25)			
20	3.00	(1.33)	(6.50)	(12.00)		
22	3.50	(0.67)	(5.75)	(11.20)		
24	4.00	(0.00)	(5.00)	(10.40)	(16.00)	
26	4.50	0.67	(4.25)	(9.60)	(15.17)	
28	3.00	1.33	(3.50)	(8.80)	(14.33)	(18.00)
30	1.50	2.00	(2.75)	(8.00)	(13.50)	(16.00)
32	0.00	2.67	(2.00)	(7.20)	(12.67)	(14.00)
34		3.33	(1.25)	(6.40)	(12.00)	(12.00)
36		2.00	(0.50)	(5.60)	(10.00)	(10.00)
38		4.00	0.25	(4.80)	(8.00)	(8.00)
40		5.33	1.00	(4.00)	(6.00)	(6.00)
42		6.00	1.75	(3.20)	(4.00)	(4.00)
44		6.67	2.50	(2.00)	(2.00)	(2.00)
46		7.33	3.25	(0.00)	(0.00)	(0.00)
48		6.00	4.00	2.00	2.00	2.00
50		4.67	4.75	4.00	4.00	4.00
52		3.33	6.00	6.00	6.00	6.00
54		2.00	8.00	8.00	8.00	8.00
56		0.67	10.00	10.00	10.00	10.00
58			11.00	11.00	11.00	11.00
60			12.00	12.00	12.00	12.00

*Parenthesis means that the proposed formula will allow less weight.

Table 10. Changes in Allowable Weights, in Thousands of Pounds, from Formula B (Current Law) to the Proposed Formula. (continued)

TABLE 11. Existing and Proposed Bridge Weight Formulas Superposed Over Tables Reflecting the Weights of Single Axles and Two-Axle Groups Observed for All Vehicle Types in Loadmeter Surveys Conducted in 1982. Note that the Proposed and Current Formulas are identical for these Groupings

G

a) Single Axles
b) Two Axle Group

449,660 Observations
381,639 Observations

TABLE 12. Existing and Proposed Bridge Weight Formulas Superposed Over Tables Reflecting the Weights of Three-Axle Groups Observed for All Vehicle Types in Loadmeter Surveys Conducted in 1982. (263,326 Observations)

TABLE 13. Existing and Proposed Bridge Weight Formulas Superposed Over Tables Reflecting the Weights of Four-Axle Groups Observed for All Vehicle Types in Loadmeter Surveys Conducted in 1982. (163,334 Observations)

TABLE 14. Existing and Proposed Bridge Weight Formulas Superposed Over Tables Reflecting the Weights of Five-Axle Groups Observed for All Vehicle Types in Loadmeter Surveys Conducted in 1982. (79,109 Observations)

58

Formula B is shown by the solid line and the proposed formula by the broken one. For single axles and for two-axle groups, the two formulas are identical.

Table 12, for groups of three axles, shows the proposed formula to be more liberal for total axle spacings from 8 to $32 \mathrm{ft}(2.438$ to 9.754 m) which includes a larger percentage of the three-axle groups. Above $32 \mathrm{ft}(9.754 \mathrm{~m})$ the allowed weight by both formulas is $60,000 \mathrm{lb}(266.9 \mathrm{kN})$ and is controlled by the $20,000 \mathrm{lb}(88.96 \mathrm{kN})$ single-axle maximum. The maximum liberalization occurs at a length of $26 \mathrm{ft}(7.925 \mathrm{~m})$ where the proposed formula would allow an extra $4,500 \mathrm{lb}(20.02 \mathrm{kN})$ of weight.

Table 13 is for groups of four axles. The proposed formula is more restrictive for lengths shorter than $24 \mathrm{ft}(7.315 \mathrm{~m})$ than is the current formula. However, for lengths between 24 and $57 \mathrm{ft}(7.315$ and 17.37 m), the proposed formula allows higher weights, ranging up to a maximum of $7,666 \mathrm{lb}$ (34.10 kN). The table shows this. range of lengths contains more than 98 percent of the four-axle groupings.

Table 14 is for groups of five axles. The current formula is drawn in accordance with the current law which restricts gross vehicle weights to $80,000 \mathrm{lb}(355.8 \mathrm{kN})$ while the proposed formula is shown extended on up to $100,000 \mathrm{lb}(444.8 \mathrm{kN})$ reflecting a limit based on $20,000 \%$ (88.96 kN) per axle. The transition to a shallower slope at $56 \mathrm{ft}(17.07 \mathrm{~m})$, a feature of the proposed formula, is also shown. For lengths less than $37.3 \mathrm{ft}(11.38 \mathrm{~m})$ the proposed formula is more restrictive. But this represents only about 2 percent of the observations. If the maximum allowable gross weight of 80,000 lb (355.8 kN) is maintained with the proposed formula, then the proposed formula liberalizes the overall loads only on lengths between 37.3 and 51.2 $\mathrm{ft}(11.38$ and 15.61 m) with the maximum increase of $3,250 \mathrm{lb}(14.46 \mathrm{kN}$) at 46 $\mathrm{ft}(14.02 \mathrm{~m})$. While the increases are small, this range of lengths includes about 50 percent of the observed five-axle groups.

For groups of six axles and more the proposed formula is more restrictive than the current formula, at least up to $80,000 \mathrm{lb}(355.8 \mathrm{kN})$.

BOGIES
The capability of legal three-, four-, and five-axle bogies to exceed the tolerable stress levels in H 15 bridges is dramatically illustrated in graphs of figure 23. A bogie is considered to be adjacent axles, equally spaced, with a suspension designed to equalize the distribution of the load. For the purpose of these calculations they were considered as equally loaded axles, equally spaced.

Remembering that for three-axle groupings the new formula does not mandate any load reduction, one looks at the stress ratios generated by 3 -axle bogies in figure 23a. For the shortest axle spacing of $8 \mathrm{ft}(2.438$ $\mathrm{m})$ overall, one sees that the weight of $42,000 \mathrm{lb}(186.8 \mathrm{kN})$ allowed by both the old and new formulas generates a stress ratio of just over 1.27 in an H15 bridge. Following Table B, the ratio decreases with longer wheelbases, while the proposed formula, allowing for more weight, keeps the ratio near 1.27.

Figure 23b, for a 4-axle bogie, shows clearly, however, that the weight allowed on the shortest spacing, $50,000 \mathrm{lb}(222.4 \mathrm{kN})$ with a $12 \mathrm{ft}(3.658 \mathrm{~m})$ outside dimension, causes a stress ratio of 1.33. Correspondingly, with the proposed formula limits the ratio is less than 1.26. Finally, for the 5 -axle bogie, figure 23 c shows that Table B allows stress ratios as great as 1.41, while new maximums would, in general, be below 1.30.

SHORT MULTIAXLE VEHICLES

Consider some conventional multiaxled vehicles with very short wheelbases. Such trucks include those with four or more axles with outside lengths such that both table B and the recommended formula allow the same gross weights. A review of table 10 shows that these crossover points are:

Number of Axles	Length	
4	24 ft	$(7.315 \mathrm{~m})$
5	$37 \mathrm{l} / 3 \mathrm{ft}$	$(11.38 \mathrm{~m})$
6 and more	46 ft	$(14.02 \mathrm{~m})$

For shorter lengths, the recommended formula specifies a smaller gross weight; for longer lengths, it allows larger gross weights.
a. Three Axles

b. Four Axles

c. Five Axles

$$
\begin{aligned}
1000 \mathrm{lb} & =4.448 \mathrm{kil} \\
1 \mathrm{ft} & =0.3048 \mathrm{~m}
\end{aligned}
$$

Figure 23. Stress Ratios Generated in H15 Bridges by Multiaxled Bogies Having Haximum Weights Allowed by Table B Compared with those Having llaximum Weights Allowed by the Proposed Formula

Figures 24 and 25 show calculated $H 15$ bridge stress ratios resulting from 3S2 and $3 S 3$ semitrailer trucks with very short wheelbases. The figures are intended to compare the resulting stress ratios between legal trucks under Table B with those under the proposed formula. Since these wheelbases are near the crossover lengths between the two formulas, the differences are small. However, when there are differences they show the new formula to be superior both in suppressing stress ratios greater than 1.3 and increasing stress ratios below l.3.

Figure 26 shows the overstress ratios on H 15 bridges due to 3 S 2 trucks having more practical wheelbases of 44 to $56 \mathrm{ft}(13.41$ to 17.07 m$)$. The outside spacing of the two tandems was $36 \mathrm{ft}(10.97 \mathrm{~m})$, and each tandem was loaded to the maximum of $34,000 \mathrm{lb}(151.2 \mathrm{kN})$. The current law contains an $80,000 \mathrm{lb}(355.8 \mathrm{kN})$ gross weight limit for wheelbases greater than 51 ft (15.54 m). However, for all of these configurations, the new formula allows a higher gross weight than Table B.

CONVENTIONAL LENGTH VEHICLES
The gross vehicle weights on several conventional vehicle geometries required to generate the specified overstresses on critical spans were calculated. The conventional vehicle geometries are representative of those observed in the 1982 loadometer survey.

The critical spans for each of these representative vehicle geometries and proportional wheel loadings were determined. Then the gross weights to generate stress ratios of 1.05 in HS2O bridges and 1.30 in H15 bridges for the critical bridges were calculated. These gross vehicle weights are those plotted in figures 27 and 28 , and the corresponding proportional wheel loadings are summarized in table 15.

When the practical vehicles have gross weights above the lines representing the proposed formula, it means the formula is too restrictive. When the weights plot below the formula, it is not restrictive enough. Ideally, the formula should provide an envelope along the lower limit of all the points. It should be noted that the geometries and load distributions

Figure 24. Graph Contrasting the Stress Ratios Generated in H15 Bridges by the Legal Maximum Loads on 3S2 Vehicles According to Formula B with Those by the Proposed Formula

Figure 25. Grapil Contrasting the Stress Ratios Generated in H15 Bridges By the Legal Haximum Loads on 3 S 3 Vehicles According to Forrilula B with Those by the Proposed Formula

Wheelbase (ft)	Formula B (kips)		Proposed Formu la (kips)	
	P	Total P	P	Total P
44	7.5	75.5	8.0	76.0
45	8.0	76.0	9.0	77.0
46	8.5	76.5	10.0	78.0
47	9.5	77.5	11.0	79.0
48	10.0	78.0	12.0	80.0
49	10.5	78.5	13.0	81.0
50	11.0	79.0	14.0	82.0
51	12.0	80.0	15.0	83.0
52	12.0	80.0	16.0	84.0
53	12.0	80.0	17.0	85.0
54	12.0	80.0	18.0	86.0
55	12.0	80.0	19.0	87.0
56	12.0	80.0	20.0	88.0

Figure 26. Graph Showing Stress Ratios of Selected 3S2 Vehicles on H15 Bridges

Figure 27. Critical Weights for Selected Practical Vehicles Causing Specified Overstresses of 105\% on HS2O Bridges Compared to Proposed Formula

Figure 28. Critical Weights for Selected Practical Vehicles Causing Specified Overstresses of 130% on Hl 5 Bridges Compared to Proposed Formula

Table 15. Maximum Legal Weights of Selected Practical Vehicles Under Existing and Proposed Formulas when H15 Bridges Govern

Vehicle	No. Axles	Axle Spacings in feet							Axle Weight Fractions ${ }^{\text {a }}$ (\% GVW)							
3-axle truck	3	$12^{\text {b }}$	4						37	31	31					
4-axle truck	4	$12^{\text {b }}$	$4 \quad 4$						25	25	25	25				
2 tandems	4	4	28 b 4						25	25	25	25				
2 S 1	3		$12^{\text {b }}$						26	37						
2S2	4	14	$20^{\text {b }} 4$						22	29	25	25				
3S1	4		416 b						18	26	26	30				
352	5		$420{ }^{\text {b }}$						15	21	21	21	21			
353	6	12	$416{ }^{\text {b }}$	4					14	19	19	16	16	16		
3S2-2	7		$4 \quad 20{ }^{\text {b }}$	4	8				11	15	15	15	15	11	18	
3S2-3	8		$420{ }^{\text {b }}$	4	8	$20^{\text {b }}$			10	13	13	13	13	10	13	13
3S2-4	9		$420{ }^{\text {b }}$	4	8	4	24		12	13	13	10	10	10	10	13
2S2-2-2	7		$20^{\text {b }} 8$	24	8	24			12	16	16	16	12	12	16	
3S1-2-2	8	14	$424{ }^{\text {b }}$	8	24	8			10	11	11	13	13	13	13	13

aroundoff errors may cause total of axle weight fractions to differ from 100\%. bVariable spacing between axles.

NOTE: $1 \mathrm{ft}=0.305 \mathrm{~m}$
$1 \mathrm{kip}=1000 \mathrm{lb}$
$1 \mathrm{lb}=4.45 \mathrm{~N}$
shown in the figures often lead to vehicles that are illegal from other standpoints, i.e., either the single- or tandem-axle load limits are violated. Vehicles which are prohibited are shown by the open symbols while those that are not are shown by the solid symbols. Of course, all vehicles with gross weights greater than $80,000 \mathrm{lb}(355.8 \mathrm{kN})$ are prohibited by the current law.

A second item to note is that the necessity to protect the H15 bridges is the criteria used to define the steeper sloped portion of the proposed formula. Similarly, the shallower part, that part applicable to the longer wheelbases and, in turn, heavier loads, is governed by the HS20 bridges.

Single unit vehicles with four axles and some $3 S 1$ vehicles fall below the formula. So some variations of these geometries may comply with the formula and at the same time cause overstresses larger than those prescribed. But these geometries constitute a small proportion of the observed traffic and the margins above the prescribed overstresses are small. One certain conclusion is that the proposed formula is an improvement over the current formula, at least from the standpoint of overstresses in simple span bridges.

BRIDGE FATIGUE
The fatigue behavior of highway bridges is influenced primarily by stress range. The stress range is equal to the $L L+I$ stresses, therefore any changes in truck weights will result in increased fatigue loading on highway bridges and a corresponding increase in maintenance costs if the increased fatigue loading causes stresses that are above the fatigue endurance limits. To evaluate the significance of the proposed formula on the fatigue lives of highway bridges, it is necessary to make several simplifying assumptions. It is assumed that existing bridges are loaded in flexure to design allowable stresses by design vehicles., i.e.,

$$
\begin{equation*}
F=0.55 F_{y}-0.46 F_{u}-F_{s r} \tag{12}
\end{equation*}
$$

where F_{sr} is the allowable stress for repeated loadings, a function of the design lifetime in loading cycles and the weld detail category. It is assumed that flexure governs, and shear is not checked. If existing single, tandem, and triple axle bogie limits are not changed, shear stresses are not expected to increase as significantly as flexure stresses. Further, only simple spans were evaluated.

For each span checked, the maximum moment caused by the maximum legal weight vehicles and the maximum moment due to the design vehicle (or lane loading) were calculated. With the assumption that the stress range due to the design loading equals the allowable stress range, the stress range due to the maximum weight vehicles is calculated by multiplying the appropriate moment ratio.

The calculated stress ranges are compared to the allowable fatigue stress ranges in figures 29 and 30 for two representative checks. In this manner, it was determined that the ratio of the calculated stress range to the allowable stress range does not exceed 1.05 except for a small range of span for any specific vehicle configuration. Similar calculations were made for all the practical vehicles described in table 15 , and the maximum calculated stress range along with the critical span is tabulated in tables 16 and 17. Table 16 summarizes the results for A36 steel structures, and table 17 summarizes the results for A514 steel structures. These two steels have strengths bracketing the range of commonly used steels for bridge structures, and the calculated stress ranges for other steels are bounded above by the calculated stress ranges for A514 steel and below by the calculated stress ranges for A36 steels. For most spans and detail categories, the increased stress range is still well below the allowable stress range. Span-detail combinations which are most affected by the proposed formula are the more severe details E, F, E^{\prime}, in maximum moment regions of longer ($120-160 \mathrm{ft}$) spans.

Figure 29. Live Load Plus Impact Stress Range Caused by Maximum Legal Weight 3S2 Vehicle According to Proposed Formula for A36 Steel Stringers Designed for 100,000 Cycles of HS20 Load.

Figure 30. Live Load Plus Impact Stress Range Caused by Maximum Legal Weight 2S2-2-2 Vehicle According to Proposed Formula for A514 Steel Stringers Designed for More than $2,000,000$ Cycles of HS2O Loading.

TABLE 16. MAXIMMM CALCULATED STRESS RANGESa FOR VARIOUS SELECTED VEHICLES
ON HS2O designed simple spans using a36 steel

A36 Steel-Redundant Load Path Structures									
Vehicle Type	Weight in Pounds	Design Life in Cycles of Truck Loading							
		100,000		500,000		2,000,000		>2,000,000	
		$\frac{\text { Detail }}{A}$	$\frac{\text { Category }}{\text { F }}$	$\frac{\text { Detail }}{A}$	$\frac{\text { Category }}{E^{\top}}$	$\frac{\text { Detail }}{A}$	$\frac{\text { Category }}{E^{\prime}}$	$\frac{\text { Detail }}{A}$	$\frac{\text { Category }}{E^{r}}$
Tandem	34,000	$17.2(25)^{\text {b }}$	17.2 (25)	17.2 (25)	8.2 (25)	17.2 (25)	5.0 (25)	17.2 (25)	2.3 (25)
Triple	42,000	19.7 (25)	19.7 (25)	19.7 (25)	9.4 (25)	19.7 (25)	5.8 (25)	19.7 (25)	2.6 (25)
3-Axle Truck	54,000	18.0 (25)	18.0 (25)	18.0 (25)	8.6 (25)	18.0 (25)	5.3 (25)	18.0 (25)	2.4 (25)
4-Axle Truck	56,000	17.7 (30)	17.7 (30)	17.7 (30)	8.4 (30)	17.7 (30)	5.2 (30)	17.7 (35)	2.3 (35)
2 Tandems	68,000	16.5 (145)	16.5 (145)	16.5 (145)	7.8 (145)	16.5 (145)	4.8 (145)	16.5 (145)	2.2 (145)
2S1	54,000	14.0 (135)	14.0 (135)	14.0 (135)	6.7 (135)	4.0 (135)	4.1 (135)	14.0 (135)	1.8 (135)
252	69,000	17.2 (140)	17.2 (140)	17.2 (140)	8.1 (140)	17.2 (140)	5.0 (140)	17.2 (140)	2.3 (140)
3 S 1	66,000	17.5 (135)	17.5 (135)	17.5 (135)	8.3 (135)	17.5 (135)	5.1 (135)	17.5 (135)	2.3 (135)
352	80,000	20.2 (140)	20.2 (140)	20.2 (140)	9.6 (140)	20.2 (140)	5.9 (140)	20.2 (140)	2.7 (140)
353	82,000	20.9 (140)	20.9 (140)	20.9 (140)	9.9 (140)	20.9 (140)	6.1 (140)	20.9 (140)	2.7 (140)
3S2-2	96,000	22.1 (145)	18.5 (145)	22.1 (145)	10.5 (145)	22.1 (145)	6.5 (145)	22.1 (145)	2.9 (145)
3S2-3	101,000	22.1 (145)	22.1 (145)	22.1 (145)	10.5 (145)	22.1 (145)	6.5 (145)	22.1 (145)	2.9 (145)
3S2-4	105,000	22.0 (145)	22.0 (145)	22.0 (145)	10.5 (145)	22.0 (145)	6.5 (145)	22.0 (145)	2.9 (145)
2S1-2-2	115,000	21.5 (145)	15.0 (145)	21.5 (145)	10.2 (145)	21.5 (145)	6.3 (145)	21.5 (145)	2.8 (145)
3S1-2-2	115,000	21.2 (145)	14.5 (145)	21.3 (145)	10.1 (145)	21.3 (145)	6.2 (145)	21.3 (145)	2.8 (145)

${ }^{\text {a }}$ In thousands of pounds per square inch.
bNumbers in parentheses are critical span lengths in feet.

NOTE: $1 \mathrm{ksi}=1,000 \mathrm{psi}=6.89 \mathrm{MPa}$
$1 \mathrm{ft}=0.305 \mathrm{~m}$
table 17. maximum calculated stress rangesa for various selected vehicles ON HS2O DESIGNED SIMPLE SPANS USING A514 STEEL

A514 Steel-Redundant Load Path Structures									
Vehicle Type	$\begin{aligned} & \text { Wei ght } \\ & \text { in Pounds } \end{aligned}$	Design Life in Cycles of Truck Loading							
		100,000		500,000		2,000,000		$>2,000,000$	
		Deta	$\frac{\text { Category }}{\text { F }}$	Detail	$\frac{\text { Category }}{\mathrm{E}^{\prime}}$	$\frac{\text { Detail }}{\text { A }}$	$\frac{\text { Category }}{E^{\prime}}$	$\frac{\text { Detail }}{A}$	Category
Tandem	34,000	43.9 (25)	13.0 (25)	31.2 (25)	8.2 (25)	20.8 (25)	5.0 (25)	20.8 (25)	4.3 (25)
Triple	42,000	50.4 (25)	14.9 (25)	35.9 (25)	9.4 (25)	23.9 (25)	5.8 (25)	23.9 (25)	5.0 (25)
3-Axle Truck	54,000	46.1 (25)	13.7 (25)	32.8 (25)	8.6 (25)	21.9 (25)	5.3 (25)	21.4 (25)	4.6 (25)
4-Axle Truck	56,000	45.2 (30)	13.4 (30)	32.2 (30)	8.4 (30)	21.4 (30)	5.2 (30)	20.9 (30)	4.5 (30)
2 Tandems	68,000	42.1 (145)	12.5 (145)	30.0 (145)	7.8 (145)	20.0 (145)	4.8 (145)	20.0 (145)	4.2 (145)
2S1	54,000	35.9 (135)	10.6 (135)	25.5 (135)	6.7 (135)	17.0 (135)	4.1 (135)	17.0 (135)	3.5 (135)
$2 \mathrm{S2}$	69,000	43.8 (140)	13.0 (140)	31.2 (140)	8.1 (140)	20.8 (140)	5.0 (140)	20.8 (140)	4.3 (140)
$3 \mathrm{S1}$	66,000	44.6 (135)	13.2 (135)	31.7 (135)	8.3 (135)	21.2 (135)	5.1 (135)	21.2 (135)	4.4 (135)
352	80,000	51.6 (140)	15.3 (140)	36.7 (140)	9.6 (140)	24.5 (140)	5.9 (140)	24.5 (140)	5.1 (140)
353	82,000	53.3 (140)	15.8 (140)	37.9 (140)	9.9 (140)	25.3 (140)	6.1 (140)	25.3 (140)	5.3 (140)
352-2	96,000	56.2 (140)	16.8 (145)	40.2 (145)	10.5 (145)	26.8 (145)	6.5 (145)	26.8 (145)	5.6 (145)
352-3	101,000	56.6 (145)	16.8 (145)	40.3 (145)	10.5 (145)	26.8 (145)	6.5 (145)	26.8 (145)	5.6 (145)
3S2-4	105,000	56.3 (145)	16.7 (145)	40.1 (145)	10.5 (145)	26.7 (145)	6.5 (145)	26.7 (145)	5.6 (145)
2S1-2-2	115,000	55.0 (145)	16.3 (145)	39.1 (145)	10.2 (145)	26.1 (145)	6.3 (145)	26.1 (145)	5.4 (145)
3S1-2-2	115,000	54.3 (145)	16.1 (145)	38.7 (145)	10.1 (145)	25.8 (145)	6.2 (145)	25.7 (145)	5.4 (145)

a In thousands of pounds per square inch.
bNumbers in parentheses are critical span lengths in feet.

NOTE: $\quad 1 \mathrm{ksi}=1,000 \mathrm{psi}=6.89 \mathrm{MPa}$
$1 \mathrm{ft}=0.305 \mathrm{~m}$

PAVEMENT CONSIDERATIONS

Recognizing that the passage of heavy vehicles causes fatigue damage to pavements as well as to bridges and that the country's investment in pavement is several times larger than that of bridges, no change should be made in the bridge formula without considering the consequences of the change to the pavements. The analytical assessment of the impact of such a change on pavement life is not so straightforward as it is for bridges. It is generally accepted that heavy axles, and very short groupings of axles, are more damaging to pavements while gross vehicle weights, or the longer groupings of axles, are more damaging to bridges.

One measure of the fatigue damage heavy vehicles exert on pavements is termed the "equivalent axle load". The equivalent axle load compares the fatigue damage done by a single axle, or grouping of axles, with the damage done by an $18,000 \mathrm{lb}(80.06 \mathrm{kN})$ axle. So an $18,000 \mathrm{lb}(80.06 \mathrm{kN})$ single axle is arbitrarily assigned an equivalent axle load value of 1.0. A single axle, or grouping of axles, that causes twice as much damage as an 18,000 1 b (80.06 kN) axle is given as equivalent axle load value of 2.0 . Tables of equivalent axle loads for single and tandem axles, on different types of pavement surfaces, have been tabulated and published.(19) These tables are based primarily on the results of the AASHO Road Test completed in the late 1950's where the deterioration of various pavement surfaces under repeated heavy truck loadings was observed.

These tables make it possible to estimate the number of equivalent axle loads resulting from the passage of any given heavy truck. If a truck has two widely spaced axles weighing $18,000 \mathrm{lb}(80.06 \mathrm{kN})$ each, for example, it could be said that the passage of that truck generated 2.0 equivalent axle loads. Another truck with three $18,000 \mathrm{lb}(80.06 \mathrm{kN})$ axles would generate 3.0 equivalent axle loads and would be considered 50 percent more damaging to the pavement. Closely spaced axles have an interactive effect, but equivalent axle loads for tandem axles (groups of two axles jointly suspended) are also tabulated. This makes it possible to calculate the number of equivalent axle loads generated by most of the heavy truck configurations currently in use.

These calculations were made for trucks conforming to the current bridge formula and for trucks conforming to the proposed bridge formula and the results compared. These comparisons for two common truck configurations are shown in figures 31 to 34 . Figures 31 and 32 are for the 352 , a semitrailer truck with a steering axle and two tandems (commonly referred to as the eighteen wheeler). Figures 33 and 34 are for the 2S1-2, a semitrailer truck with a full trailer on two axles; so it has a steering axle with four widely spaced single axles.

For very short and very long vehicles, figures 31 and 33 show the equivalent axle loads per truck to be about the same. In fact, for the short ones, those with wheelbases less than about 36 ft (10.97 m), the proposed formula would lead to smaller equivalent axle loads per truck. If the 80,000 lb (355.8 kN) maximum gross weight per vehicle is maintained, the proposed and current formulas come together at wheelbases just over $50 \mathrm{ft}(15.24 \mathrm{~m})$ and are identical for all longer lengths. However, in the intermediate lengths, the equivalent axle loads per truck are significantly greater, in some instances by as much as 20 percent. These intermediate truck lengths, 36 to 50 ft (10.97 to 15.24 m), are very common, and the increase in equivalent axle loads would certainly have a detrimental effect on the wearout rate of our pavements.

So it appears that the average equivalent axle load per vehicle will probably increase if the proposed formula is adopted. Even so, this increase would be more acceptable if it could be shown that the payload per equivalent axle load increased as a result of the change. Figures 32 and 34 show the gross vehicle weights versus wheelbase alongside plots of the assumed payloads divided by vehicle equivalent axle loads. These payloads were calculated by subtracting an arbitrary vehicle empty weight of $25,000 \mathrm{lb}$ (111.2 kN) from the gross vehicle weights. Disappointingly, the payload per equivalent axle load was found to decrease, if only slightly, for vehicles complying with the proposed formula.

The calculations and comparisons of the equivalent axle loads per truck, as shown above, are evidence that the new bridge formula, as stated and

Figure 31. Equivalent Axle Loads of 3 S2 Vehicles for the Proposed Formula and the Existing Formula

Figure 32. Curves Illustrating the Gross Vehicle Weight and Payload per Equivalent Axle Load for 3S2 Vehicles Complying with the Froposed and Current Bridge Formulas. These are the Same Vehicles as in Figure 31

Figure 33. Equivalent Axle Loads of 2S1-2 Vehicles for the Proposed Formula and the Existing Formula

Figure 34. Curves Illustrating the Gross Weight and Payload per Equivalent Axle Load for 2S1-2 Veiricles Complying with the Proposed and Current Eridge Formulas. These are the Same Vehicles as in figure 33
without further modification, would indeed be detrimental to pavements. Currently, pavement deterioration rates are higher than ever, and a change in the bridge formula should not be allowed to magnify that problem. As a result, it is recommended that a detailed study of the influence of a bridge formula change on pavements be initiated with the goal of suggesting additional modifications that would permit the formula to be used without causing unacceptable pavement deterioration. One alternative such a study could consider would be to reduce the allowed maximum single- and tandem-axle loads to coincide with the adoption of the new formula.

A new bridge formula consisting simply of two straight lines relating the maximum weight allowed on any group of axles to the dimension between the extremes of the axles is being suggested. The formula is independent of the number of included axles. The formula is written

$$
\begin{array}{lr}
W=34+L, & 8 \mathrm{ft} \leq L \leq 56 \mathrm{ft} \\
W=62+L / 2, & 56 \mathrm{ft} \leq L
\end{array}
$$

where W is the weight in thousands of pounds and L in the outside dimension of any group of axles in feet. This formula would assure the specified overstress ratios would rarely be exceeded for all vehicle configurations even if maximum lengths or maximum gross weights were liberalized.

A further constraint on the formula is that single axles may not weigh more than $20,000 \mathrm{lb}(88.96 \mathrm{kN}$) and tandems (2 axles) not more than $34,000 \mathrm{lb}$ (151.2 kN) for spacings from 4 to $8 \mathrm{ft}(1.219$ to 2.438 m). For tandems spaced more than $8 \mathrm{ft}(2.438 \mathrm{~m})$ but less than $10 \mathrm{ft}(3.048 \mathrm{~m})$ the weight may be $30+\mathrm{L}$, in thousands of pounds, as it is with the current law.

In bridges, the problems that might be expected with increased axle loads are fatigue damage to reinforcing steel in concrete, weld fatigue in steel elements, and increased rate of crack growth in steel.

Assuming that pavements and bridges are designed for a given traffic density, makeup, and axle loading, it must be accepted that the life of a pavement or a bridge will be reduced if the axle loads are increased. Pavements, in particular, and welded steel bridges would be affected more than reinforced or prestressed concrete bridges by those increases. Assuming a linear relationship between load and stress, an increase in a single-axle load will take a heavy toll on the life of existing pavements and bridges. The benefits received from an increase in axle load would have to be very high to make the accelerated deterioration acceptable. So an increase in the maximum single- and tandem-axle loads is not recommended.

The proposed formula is based on engineering rationale, albeit several controversial assumptions.

If the bridge formula is not enforced, irrespective of the formula being used, bridges are apt to have foreshortened service lives due to fatigue.

The indiscriminate issuing of overweight truck permits, especially those on a periodic or annual basis, are equally apt to result in foreshortened bridge service lives.

Adoption of the proposed bridge formula, without any change in the maximum single and tandem axle loads, will cause an increase in the average equivalent axle load per truck. This is often considered the primary measure of the fatigue damage a vehicle causes to pavement. So, while the proposed formula will satisfactorily protect the bridge structures, there is real concern about its effect on pavements, a consequence that should be carefully evaluated before any changes are made.

APPENDIX A
 STATISTICAL ANALYSIS OF TRUCK WEIGHT DATA

INTRODUCTION

The objective of this task is to provide data that would permit a comparison of the existing bridge formula with the proposed formula. Given the form of the two laws, such data must necessarily relate the total weight supported by a single axle or a group of axles to the maximum spacing of the axles. In order to evaluate the existing formula, the number of axles in the group must also be specified.

DESCRIPTION OF THE DATA
The data used in this study has been extracted from the Annual Truck Weight Study that is conducted by the State highway agencies in cooperation with the Federal Highway Administration. The specific data used in this report was collected in 1983. The raw data was supplied by the Highway Statistics Division of the FHWA in the form of magnetic tapes. Further details specifying methods of collection, locations, weighing operations, and classification counts are described elsewhere $(20,21)$.

The 1983 survey resulted in a sample of 127,518 vehicles. For each vehicle was provided specific information on the type of vehicle, the state in which the data was collected, individual axle weights, axle spacings, and gross weights. A typical set of 58 records is shown in figure 35. Additional information required to interpret the data is summarized in tables 18 to 20.

ANALYSIS OF THE DATA
Frequency Count by State
The data was first analyzed to provide a one-way frequency classification for the States involved in the data gathering process. The analysis was accomplished using an existing computer statistical package (22). As shown in table 21,24 States were involved with approximately 50 percent of the data coming from Iowa, Texas, Washington, Wisconsin, and New Jersey.

70101004383070808240000352990009992204001059616019213011400019004004000002700010 70101004383070808220000422990009992411001024710314400000000017000000000001700020 70101004383070808332000412990009992411001047908510610108110611004031005005100030 70101004383070808332000412990009992411001066509615213311916510005027004004600040 70101004383070808332000212990009992331001058308810812612813310004042004006000050 70101004383070808220000411990009991360001014904910000000000017000000000001700060 70101004383070808332000412990009991000000021306605702902703411004024004004300070 70101004383070808332000422990009992090001062711215214111111111005023004004300080 70101004383070808332000212990009992242001066410213013614415214004025005004800090 70101004383070808332000412990009992281001074907314615317720014004025004004400100 70101004383070808322000412990009991000000021705609204102800011030004000004500110 $7010100438307080833200042299000999220200104870721 \cdot 1010508711312004028004004800120$ 70101004383070808333000212990009991331001066209809909709511409004024004004500131 70101004383070808333000212991590000000000000000000000400000000000000000000000139 70101004383070808332000412990009992000000025507505605603902912005029004005000140 70101004383070808220000412990009991362001022806516300000000015000000000001500150 70101004383070808220000412990009991262001015005709300000000015000000000001500160 70101004383070808322000412990009991000000034207012307607300012030005000004700170 70101004383070808332000412990009992343001038408410007107305610004032004005000180 70101004383070808322000412990009992203001033207914105305900011028004000004300190 70401004383070808332000412990009992365001039007908906107508610004025004004300200 70101004383070808220000232990009991242001021510511000000000013000000000001300210 70101004383070808332000412990009992365001057910613610711012010004031004004900220 70101004383070808220000412990009991411001016407808600000000019000000000001900230 70101004383070809332000212990009992242001074210416614816715712004028004004800240 70101004383070809332000412990009992371401038409007307007207910005029005004900250 70101004383070809332000622990009992371001063411508717912712609004036005005400260 70101004383070809332000412990009992411001072810315513144519411005026004004600270 70101004383070809337000212990009992333001060507110813315613715004023009005100280 70101004383070809332000412990009992360001046106910409909209709005025004004300290 70101004383070809332000422990009992203001074311215617113716711004030004004900300 70101004383070809332000422990009992000000038208906909905207317005027005005400310 70101004383070809322000622990009992371001042910009210713000012034004000005000320 70101004383070809332000212990009992325001046808609811008708714004029004005100330 70101004383070809220000432990009992250001021409811600000000020000000000002000340 70101004383070809332000412990009992260001048008712408707710510004031004004900350 70101004383070809332000422990009993202001069510516417714910010005029004004800360 70101004383070809322000412990009992411001048808412613514300010023004000003700370 70101004383070809322000412990009992411001038307714907308400010023004000003700380 70101004383070809322000412990009991420001027305708306007300010033006000004900390 70101004383070809332000212990009992240001022807006304802901810005027005004700400 70101004383070809332000412990009992285001037007609805306807510004028004004600410 70101004383070809332000412990009992411001072310215513114618912004024004004400420 70101004383070809220000422990009991200001024210513700000000016000000000001600430 70101004383070809332000412990009992411001045808607708309611610005025004004400440 70101004383070809332000512990009992200001073107617216913418012004026004004600450 70101004383070809332000422990009992000000075311717316512417413004032005005400460 70101004383070809332000212990009991333001026208006004104203910005022005004200470 70101004383070809332000212990009992331001029706606706504205712005028004004900480 70101004383070809220000621990009991000000014005508500000000014000000000001400490 70101004383070809332000422990009992202001065510711912815514611004026004004500500 70101004383070809332000412990009992333001074411214416815816211005028004004800510 70101004383070809220000412990009991372001012104907200000000014000000000001400520 70101004383070809332000412990009992000000063610314113815809610004032004005000530 70101004383070810220000232990009992000000014406607800000000017000000000001700540 70101004383070810332000242990009992330001072820014316410311811004028004004700550 70101004383070810332000422990009992200001078610417014118019112004028005004900560 70101004383070810332000422990009992280001034806806606906108411004027004004600570

Figure 35. Typical Weight Data for 58 Vehicles, 1983

Table 18. Description of Data Field

TRUCK WEIGHT TABULATING CARO 7 :

1. useo for vehicles having no more than 5 axles or for the first 5 axles or larger combinations.

Table 19. Vehicle Type Coding Chart

	1st Character	2nd Character	3ri Character	4ch Character	Sth Character 60	Sh Character
Passenger vehicles	$\begin{gathered} \text { basic vehicle } \\ \text { type }-0 \end{gathered}$	(c) vehicle type	(A) registration modifier	(B) light erailer modifier	State of registration	
Buses	```basic vehicle cype = 1```	(D) vehicle rype	(A) regiscration modifier	(E) axle \& cire modifice	State of regiscration	
Single-unit erueks	```basic vchicle type = 2```	(F) cotal axles	(. 1) registration modifier	(B) light traller modifier	Scate of registration	
Tractor + semitrailer	```basic vehicle sype - 3```	total axles on power unit	(G) rotal axies on firse erailer	$\operatorname{code}=0$	code $=0$	(H) special modifier
Iruck + full erailer	```basic vehicle type = 4```	cotal axles on power unit	(C) cotal axles on Eirst trailet	code $=0$	code $=0$	(H) special modifier
$\begin{aligned} & \text { Tractor + sceitrailer } \\ & \quad+\text { full trailer } \end{aligned}$	```basic vehicie type = 5```	total axles on power unite	(G) tocal axies on firse crailer	(G) total axles on second erailer	code $=0$	(1) special modifier
$\begin{aligned} & \text { Truck + full trafler } \\ & \quad+\text { full trailer } \end{aligned}$	```basic vchicle type = 6```	total axles on power unit	(C) cotal axles on first erailer	(C) cotal axles on second trailer	code $=0$	(H) special modifier
```Irac:oz - senitrailer + 2 f:ll crailers```	```basic vehicle type = 7```	coral axles on power unit	(C)   cotal axles on first trailer	(C)   tocal axles on sccond railer	(G)   total axles on third erailer	(H) special acdifier
Truck + 3 full trailer	```basic vehicle type = $```	coral axles on power unit	(C)   total axles on first reailer	(G)   coral axles on second trailer	(G)   total axles on third eraller	( H ) special. nodifier

Table A
O State regiseration not recorded
1 In-Scare, all
2 Out-of-state, all
3 In-State, nongovernmient owned
3 In-State, nongovermient own
5 Out-of-State, nongovernment owned
6 Out-of-scate, government owned
7 Federal government owned

## Table $B$

ONo traller
1 Camp trailer
2 Mobile home
2 Mobile home
3 Cargo trailer
3 Cargo trailer
4 Boat trailer
4 Boat erailer
6 Towed auto
7 Towed cruck
8 "Slantback"
9 Any or all types
crailed vehicles

## Table $C$

1 Motorcycle
2 Motorscoore
3 Mororsycler Motorcycle or motorscooter 4 Standard auto
5 Compact auto
6 Small auto
7 Scandard and
compact auto
8 Compact and
small auto
Table F
0 Panel and pickup
1 Heavy two-axle, four-cire
2 Tvo-axie, $s i x-t i r e$
3 Three-axie
4 Four-axle
5 Five-axle
6 Six-axle
7 Seven-axle
8 Eight-axies or more

Table D
Bus.intercity, commercial
2 Bus, transit, commercial
3 Bus, sightseeing, commercial
4 Bus, comercial, other
5 Bus, commercial, any eype
6 Bus, school and nonrevenue
7 Bus. camper
8 Bus, all nonrevenue type

Table E
0 Axle arrangement not recorded
1 Tro-axie, four-eire
2 Two-axle, six-tire
3 Three-axle
4 Four-axles or more

Table G
0 No Trailer
1 Single-axie trailer
2 Two-axle trailer
3 Three-axle erailer
4 Four-axle trailer
5 Five-axle trailer
6 six-axie trailer
7 Two-axle trailer with one spread tandem
8 Three-axle trailer uith one spread tandem
9 Four-axle trailer with one spread randem

Table H
ONo special modification
1 One spread randem on pavement in addition to any indicated by 7, 8, 9 in C3, C4, C5.
2 Tro spread tandems on pavement in addition to any indicated by $7,8,9$ in C3. C4, C5.
3 Three spread tanderss on pavement in addition to any indicated by $7,8,9$ in C3, C4, C5.
4 One trailer piggyback and no spread tandems except chose indicated by $7,8,9$ in C3, C4, C5.
5 One trailer piggyback and one spread tandem on pavement in addition to any indicated by $7,8,9$ in C3. C6. C5.

6 One trailer piggyback and two sets of spread tandems on pavement in addition to any indicated by ?. 8. 9 in C3, C4, C5.
7 Two trailers piggyback and no spread canders except those indicated by 7, 8, 9 in C3, C4, C5.
8 Two trailers piggyback and one spread tandero on pavenent in addition to any'indicated by 7,8 , 9 in C3, C4, Cs.
9 Two trailers piggyback and two sets of spread candems on pavement in addition to any indicated by 7 . 8, 9 in C3. C4. C5.

Table 20. Codes for Census Divisions \& States

Code	New England (01)	Code	Wast North Central (0n) (Weat of MIsissippi Rlver)	
01	Connecticut	31	lowa	
02	Maine	32	Kanias	
03	Massochusatts	33	Minnesola	
04	New Hampahire	34	Miseouri	
05	Rhode Isiand	35	Nebraska	
06	Vermont	$36$	North Dakota South Dakota	
Middie Allantic (02)				
		West South Central (08)		
07	Now Jersey   New York   Pennsylvania			
$\begin{aligned} & 08 \\ & 09 \end{aligned}$		41	Arkansos	
		42	Lovisiana	
		43	Oklahoma	
	South Atlantic (North) (03)	44	Texas	
11	Deloware		Mountain (08)	
12	District of Columbia			
13	Maryland	51		
14	Virginia	52	Coloracto	
15	West Virginia	53	Iddho Montana	
		54		
	South Atlantic (South) (09)	55		
		56	Now Mexico	
16	Florida	57	Utah	
17	Georgio	58	Wyoming	
18	North Corolina			
19	South Caralina	Pacific (10)		
East North Central (05)		$\begin{aligned} & 61 \\ & 62 \end{aligned}$	Califormia Oregon	
21	llinois	63	Washington	
22	Indiana	(11)		
23	Michigon			
24	Wisconain	6465	. Naka   Hawail Puerto Rico	
25				
	East South Central (06) (East of MIEsisuppl Kivar)	66		
26	Alaboma			
27	Kentucky			
28	Mississippl			
29	Tennescee			

Table 21. Vehicle Frequency Count by State, 1983 state code frequency ` Cumfreq percent cum percent

1	3283	3283	2.575	2.575
7	9194	12477	7.210	9.785
8	2977	15454	2.335	12. 119
9	5213	20667	4.088	16.207
14	4236	24903	3. 322	19.529
21	2988	27891	2.343	21.872
22	3021	30912	2. 369	24.241
25	9955	40867	7.807	32.048
31	17620	58487	13.818	45.866
32	1184	59668	0.926	46.792
33	4513	64181	3.539	50.331
34	3502	67683	2.746	53.077
37	3733	71416	2.927	56.005
41	5533	76949	4.339	60.344
42	1590	78539	1. 247	61.591
43	6026	84565	4. 726	66.316
44	15310	99875	12.006	78.322
52	1914	101789	1.501	79.823
53	2115	103904	1.659	81.482
54	1994	105898	1. 564	83.046
56	7394	113292	5.798	88.844
63	12927	126219	10.137	98.981
64	430	126649	0.337	99.319
65	869	127518	0.681	100.000

The data was also analyzed to provide a one-way frequency classification for the vehicles. As shown in table 22, 131 vehicle types were distinguished. However, the vehicle type designated 332000 (see table 22) accounted for 61.5 percent ( 78,474 vehicles) of the sample. In the ensuing analysis, vehicle types 200000, 220000, 230000, 321000, 322000, 332000, and 521200, which accounted for approximately 93 percent of the sample, were analyzed further.

## Two-Way Cross Tabulation for Truck Weight Data

The objective of this part of the analysis was to generate a two-dimensional frequency diagram for the entire data set with the number of axles as a parameter. This objective was realized in the following manner. For each of the selected vehicles, a new data set was created. Each element of this new data set consisted of the spacing between a group of axles and the total load supported by the contributing axles. For example, a five axle vehicle produced 10 observations. For each vehicle type, this new data set was then partitioned according to the number of axles. Next, all the data sets representing the same number of contributing axles were combined into a single data set. This step resulted in a collection of four data sets: one set each for two axles, three axles, four axles, and five axles with 381,639 , $263,326,168,334$, and 79,109 observations, respectively. In the final stage of the analysis, each of the four data sets was used to generate a two-way cross tabulation table with the axle spacing and the weight of the contributing axles as the variables.

A typical two-way frequency table developed using the outlined procedure is shown in table 23. From these results, coarser tables were constructed for all axle spacings as shown in tables 11 to 14.

Table 22. Vehicle Frequency by Vehicle Type
VEHICLECODE FREQUENCY CUMFREQ PERCENT CUM PERCENT

200000	6223	6223	4.880	4.880
200079	97	6320	0.076	4.956
200100	24	6344.	0.019	4.975
200200	2	6346	0.002	4.977
200300	33	6379	0.026	5.002
200400	10	6389	0.008	5.010
200500	25	6414	0.020	5.030
200600	1	6415	0.001	5.031
200791	1	6416	0.001	5.031
200800	1	6417	0.001	5.032
200900	62	6479	0.049	5.081
201000	481	6960	0.377	5.458
201100	1	6961	0.001	5.459
201200	2	6963	0.002	5.460
201300	7	6970	0.005	5.466
201700	1	6971	0.001	5.467
201900	2	6973	0.002	5.468
202000	26	6999	0.020	5.489
202200	1	7000	0.001	5.489
210000	276	7276	0.216	5. 706
210079	3	7279	0.002	5.708
210300	28	7307	0.022	5.730
211000	69	7376	0.054	5.784
211200	1	7377	0.001	5.785
212000	1	7378	0.001	5.786
-220000	16528	23906	12.961	18.747
220004	2	23908	0.002	18.749
220079	72	23980	0.056	18.805
220100	4	23984	0.003	18.808
220200	. 3	23987	0.002	18.8 .11
220300	67	24054	0.053	18.863
220400	3	24057	0.002	18.866
220500	16	24073	0.013	18.878
220600	6	24079	0.005	18.883
220700	4	24083	0.003	18.886
220800	7	24090	0.005	18.891
220900	50	24140	0.039	18.931
220979	6	24146	0.005	18.935
221000	927	25073	0.727	19.662
221065	479	25552	0.376.	20.038
221200	1	25553	0.001	20.039
2.22000	267	25820	0.209	20.248
230000	5462	31282	4.283	24.531
230079	3	31285	0.002	24.534
230300	5	31290	0.004	24.538
230500	1	31291	0.001	24.538
230600	1	31292	0.001	24.539
230700	7	31299	0.005	24.545
230800	5	31304	0.004	24.549
230900	8	31312	0.006	24.555
231000	201	31513	0.158	24.713
231065	96	31609	0.075	24.788
231300	1	31610	0.001	24.789
231500	26	31636	0.020	24.809
232000	49	31685	0.038	24.847
232800	4	31689	0.003	24.851

Table 22. Vehicle Frequency by Vehicle Type (continued)
VEHICLECODE FREQUENCY CUMFREQ PERCENT CUM PERCENT

233200	1	31690	0.001	24.851
240000	273	31963	0.214	25.065
241000	88	32051	0.069	25.134
241300	2	32053	0.002	25. 136
242000	5	32058	0.004	25.140
242300	1	32059	0.001	25.141
250000	1	32060	0.001	25.142
321000	2126	34186	1.667	26.809
-322000	6547	40733	5. 134	31.943
323000	87	40820	0.068	32.011
324000	1	40821	0.001	32.012
327000	26	40847	0.020	32.032
331000	355	41202	0.278	32.311
332000	78474	119676	61.540	93.850
332001	27	119703	0.021	93.871
332002	1	119704	0.001	93.872
332004	92	119796	0.072	93.944
332006	2	119798	0.002	93.946
333000	693	120491	0.543	94.489
334000	15	120506	0.012	94.501
337000	626	121132	0.491	94.992
338000	27	121159	0.021	95.013
341000	2	121161	0.002	95.015
342000	122	121283	0.096	95.110
343000	66	121349	0.052	95.162
344000	16	121365	0.013	95.175
354000	1	121366	0.001	95.176
355000	1	121367	0.001	95.176
421000	54	121421	0.042	95.219
421001	1	121422	0.001	95.219
422000	328	121750	0.257	95.477
423000	55	121805	0.043	95.520
427000	1	121806	0.001	95.521
431000	25	121831	0.020	95.540
432000	1325	123156	1.039	96.579
433000	158	123314	0. 124	96.703
434000	51	123365	0.040	96.743
435000	7	123372	0.005	96.749
437000	2	123374	0.002	96.750
441000	1	123375	0.001	96.751
442000	24	123399	0.019	96.770
443000	15	123414	0.012	96.782
444000	20	123434	0.016	96.797
449000	1	123435	0.001	96.798
521100	1	123436	0.001	96.799
521200	2567	126003	2.013	98.812
521300	14	126017	0.011	98.823
521700	3	126020	0.002	98.825
522100	6	126026	0.005	98.830
522200	142	126168	0.111	98.941
522300	3	126171	0.002	98.944
531100	4	126175	0.003	98.947
531200	567	126742	0.445	99.391
531300	26	126768	0.020	99.412
531400	1	126769	0.001	99.413
532100	3	126772	0.002	99.415
532200	497	127269	0.390	99.805

Table 22. Vehicle Frequency by Vehicle Type (continued) VEHICLECODE FREQUENCY CUMFREQ PERCENT CUMPERCENT

532300	165	127434	0.129	99.934
532400	37	127471	0.029	99.963
533200	5	127476	0.004	99.967
533300	4	127480	0.003	99.970
537300	1	127481	0.001	99.971
542100	1	127482	0.001	99.972
542200	7	127489	0.005	99.977
542400	6	127495	0.005	99.982
543200	1	127496	0.001	99.983
543300	1	127497	0.001	99.984
622200	1	127498	0.001	99.984
632100	1	127499	0.001	99.985
632200	1	127500	0.001	99.986
633300	1	127501	0.001	99.987
721220	1	127511	0.008	99.995
722220	2	127512	0.001	99.995
731220	3	127514	0.002	99.997
732220	1	127517	0.002	99.999
742230				0.001

Table 23. Two-Way Classification for Three-Axle Group


## BIBLIOGRAPHY

More time was spent on the collection and consideration of information concerning bridge formulas than any other task. Many references were reviewed and as a result a small bibliography was compiled. Those documents found to be most pertinent were extracted and are reproduced here for the convenience of the reader.
"AASHO Interim Guide for Design of Flexible Pavement Structures," American Association of State and Highway Officials, Washington D.C., Oct. 1961.
"AASHO Interim Guide for Design of Rigid Pavement Structures," American Association of State and Highway Officials, Washington D.C., April 1962.
"AASHO Interim Guide for Design of Pavement Structures 1974," American Association of State and Highway Officials, Washington D.C., 1974.
"The AASHO Road Test," Special Report 73, Highway Research Board, May 16-18, 1962.
"The AASHO Road Test, Report 4," Special Report 61D, Highway Research Board, National Academy of Sciences, 1962.
"The AASHO Road Test, Report 5," Special Report 6lE, Highway Research Board, National Academy of Sciences, 1962.
"The AASHO Road Test, Report 6 - Special Studies," Special Report 6lF, Highway Research Board, National Academy of Sciences, 1962.
"The AASHO Road Test, Report 7 - Summary Report," Special Report 61G, Highway Research Board, National Academy of Sciences, 1962.

AASHTO Standard Specifications for Highway Bridges, 12 th ed.,American Association of State Highway and Transportation Officials, Washington D.C.,1977.
"AASHTO Interim Specifications for Highway Bridges," American Association of State Highway and Transportation Officials (AASHTO), Washington D.C., 1980.

Agarwal, A. C., and Csagoly, P. F., "Evaluation and Posting of Bridges in Ontario," Transportation Research Record No. 664, Transportation Research Board, Washington D.C., 1978.
"An Analysis of Potential Changes in State Weight Limits," System Design Concepts, Inc. (SYDEC), Washington D.C., 1982.
"A Review of American Trucking Associations' Reports on 'Causes of Pavement Damage on Interstate Highways' and 'Effects of Truck Weights on Pavement Deterioration'," Oregon Department of Transportation, Oct.1981.
"A Review of 'Effects of Truck Weights on Pavement Deterioration (Texas Transportation Institute)' and 'Causes of Pavement Damage on Interstate Highways (Counsel Trans),'" American Association of State and Transportation Officials (AASHTO), Washington D.C., Feb. 1982.

Arthur, P. D., Earl, J. C., and Trevor, H., "Corrosion Fatigue in Concrete for Marine Applications," ACI Publication SP-75, American Concrete Institute, 1982, pp. 1-24.
"Allocations of Federal Highway Program Costs to Motor Vehicles on the Basis of the Cost They Occasion," Counsel Trans Inc., Sept. 1981.

Bannister, J.L., "Fatigue and Corrosion Fatigue of Torbar Reinforcement," The Structural Engineer No. 56A, London, 1978, pp. 82-86.

Bettigole, N. H., "IICL Container Load/National Bridge Formula Study," Submitted to the Texas Transportation Institute as a Contractor to the Federal Highway Administration by the Institute or International Container Lessors, Sept. 1984.

Bridge Gross Weight Eormula, U.S. Department of Transportation, Federal Highway Administration, Washigton D.C., Mar. 1982 and Apr. 1984.

Buth, E., Furr, H.L., and Jones, H.L., "Evaluation of a Prestressed Panel, Cast-in-Place Concrete Bridge," Research Report 145-3, Texas Transportation Institute, Sept. 1972.
"Capital Cost Allocations and User Change Structure Options," Highway Cost Allocation Study Working Paper No.12, U.S. Department of Transportation, Federal Highway Administration, Office of Program and Policy Planning, July, 1981.

Carmichel III, R. F., Roberts, F. L., and Treybig, H. J., "Procedure for Evaluating the Effects of Legal Load Limits on Pavement Costs," Transportation Research Record No.725, Transportation Research Board, Washington D.C., 1979, pp. 1-7.

Carrier, R.E., and Cady, P. D., "Factors Affecting Durability of Concrete Bridge Decks," ACI Pubilication SP-47, American Concrete Institute, pp. 121168.
"Causes of Pavement Damage on Interstate Highways," Counsel Trans, Inc., Mar. 1982.
"Changes in Legal Vehicle Weights and Dimensions - Some Economic Effects of Highways," NCHRP Report 141, Highway Research Board, Washington D.C., 1973.

Christian, P. P., Goodman, L. E., and Sun, C. N., "Bridge Stress - Range History," Highway Research Record No. 382, Highway Research Board, Washington D.C., 1972.

Chung, H. W., "Unbonded Tendons in Post-Tensioned Concrete Beams Under Repeated Loading," ACI Journal, American Concrete Institute, Dec. 1973.

Clemmer, H. F., "Fatigue of Concrete," Proceedings, American Society for Testing and Materials, Vol. 23, Part. II, 1923, pp. 329-340.

Concrete Payement Design for Roads and Streets," Portiand Cement Association, Chicago, Illinois, 1951.

Csagoly, P. and Dorton, R. A., "The Development of the Ontario Highway Bridge Design Code," Transportation Research Record No. 665, Transportation Research Board, Washington D.C., 1978.

Csagoly, P. F. and Dorton, R. A., "Proposed Ontario Bridge Design Load," Ontario Ministry of Transportation and Communication, Report \#RR 186, Transportation Research Board, Washington D.C., Nov. 1983.

Csagoly, P., Holowak, M., and Dorton, R., "The True Behavior of Thin Concrete Slabs," Transportation Research Record No.664, Transportation Research Board, Washington D.C., 1978.

Daniels, J. H., "Use of Bartonsville Bridge to Weigh Trucks in Motion," Lehigh University, Apr. 1977.
"Department of Transportation and Related Agencies Appropriations for 1984 Part l," Hearings Before a Subcommittee of the Committee on Appropriations, U.S. House of Representatives, 98th Congress, U.S. Government Printing Office, 1984.
"Effects of Changes in Legal Load Limits on Pavement Costs. Vol. 1 and Vol. 2," Report No. FHWA-RF-79-74, Federal Highway Administration, Washington D.C., July 1982.
"Effects on Flexible Highways of Increased Legal Vehicle Weights Using VESYS IIM," Report No. FHWA-RF-77-116, Federal Higway Admịnistration, Washington D.C., Jan. 1978.
"Evaluation of Load Carrying Capacity of Bridges," Prepared by the Organisation for Economic Co-operation and Development (OEDC), Paris 1979.
"Excessive Truck Weight: An Expensive Burden. We Can No Longer Support," Comptroller General's Report to the U.S. Congress, GAO/CED-79-94, July 1979.
"The Federal Bridge Formula: Its Effects on the Farming Trade of the United States," A Statement by the Steamship Operators Intermodal Committee to the Texas Transportation Institute as a Contractor to the Federal Highway Administration, Sept. 1974.
"Final Report on the Federal Highway Cost Allocation Study," Report of the Secretary of Transportation to the Congress, Federal Highway Administration, Government Printing Office, Washington D.C., May 1982.

EIP Manual of Light Weight Aggregate Concrete, Prepared by Federation Internationale de la Precontrainte (FIP), John Wiley \& Sons, New York, 1983.

Francois, F. B., "Weight-Distance Tax: A Modern Tax for a Modern Motor Carrier Industry, AASHTO Quarterly, American Association of State Highway and Transportation Officials, Vol. 63, No. 3, Washington D.C., July 1984.

Galambos, C. F., "Highway Bridge Loadings," Engineering Structures, Vol.l, No.5, Oct. 1979.

Galambos, C. F. and Heins, C. P., "Loading History of Highway Bridges: Comparison of Stress Range Histograms," Highway Research Record No.354, Highway Research Board, Washington D.C., 1979.

Haaijer, G., Schilling, C., and Carskaddan, P. S., "Limit State Criteria for Load-Factor Design of Steel Bridges," Engineering Structures, IPC Science and Technology Press Limited, Vol. 5, No. I, Jan. 1983.

Hanson, J. M., Husbos, C. L., and Van Horn, D. A., "Fatigue Tests of Prestressed Concrete I-Beams," Proceedings, American Society of Civil Engineers, Vol. 96, No. STll, Nov. 1970.

Hanson, J. M., Somes, M. F., and Helagson, T., "Investigation of Design Factors Affecting Fatigue Strength of Reinforcing Bars - Test Program," ACI Publication SP-41, American Concrete Institute, 1974, pp. 71-105.

Havens, J. H., Southgate, H. F., and Deen, R. C., " Fatigue Damage to Flexible Pavements Under Heavy Loads," Transportation Research Record No.725, Transportation Research Board, Washington D.C., 1979, pp. 15-21.
"Heavy Vehicle Cost To State Highways in California," State of California Dept. of Transportation, July 1978.

Heins, C. P. and Firmage, D. A., "Design of Modern Steel Highway Bridges," John Wiley \& Sons, New York, 1979.

Henion, Loyd, "The Oregon Experience with Weight-Distance Taxes," Oregon Dept. of Transportation, Oregon State Highway Div., Economic Services Unit, Mar. 1983.
"Highway Bridge Replacement and Rehabilitation Programs" Fifth Annual Report of the Secretary of Transportation to the Congress of the Unites States, Document No. 98-34, Oct. 1984.

Highway Structures Design Handbooke Vole IIe Application Examples. United States Steel Corporation, 1965.

Hudson, W. R. and Seeds, S. B., "And Examination of Pavement Deterioration in the Presence of Automobile Traffic," Austin Research Engineers, Mar. 1983.

Hulsbos, C. L. and Linger, D. A., "Dynamic Test of a Three-Span Continuous I-Beam Highway Bridge," Bulletin No. 279, Highway Research Board, Washington D.C., 1960.

Imbsen, R. A., "Bridge Weight-Limit Postings Practice," NCHRP Report 108, Highway Research Board, Washington D.C., 1984.
"Impacts of Heavy Freight Vehicles," Prepared by the Organisation for Economic Co-operation and Development (OEDC), Paris 1983.

Johnston, D. W. and Zia, P., "Level-of-Service System for Bridge Evaluation," Transportation Research Record No. 962, Transportation Research Board, Washington D.C., 1984, pp. 1-8.

Klaiber, F. W. and Lee, D., "The Effect of Air Content, Water-Cement Ratio, and Aggregate Type on the Flexural Fatigue Strength of Plain Concrete," ACI Publication SP-75, American Concrete Institute, 1982, pp. lll-131.
"Limited Funds and Numerous Deficient Off-System Bridges Create Federal Bridge Program Dilemma," Report to the Secretary of Transportation, GAO/RCED 84-66, U.S. General Accounting Office, Dec. 8, 1983.

Lytton, R. L., Scullion, T., Garrett B. D., and Michalak, C. M., "Effects of Truck Weights on Pavement Deterioration," Texas Transportation Institute, Sept. 1981.

Lytton, R. .L. and Kohutek, Gordon, "Evaluation of AASHO Road Test Satellite and Environmental. Studies," National Cooperative Highway Research Program, June 1983.

MacGregor, J. G., Jhamb, L. C., and Nuttall, N., "Fatigue Strength of Hot Rolled Deformed Reinforcing Bars," Journal ACI, American Concrete Institute, No. 3, Proc. V. 68, Mar. 1971, pp. 169-179.

Maloney, M. F., "The Effect of Decreaded Vehicle Weights on Pavement and Structure Life," Address to the SASHO Meeting of the Committee of Commercial Vehicle Size and Weights, Mobile, Alabama, Oct. 5, 1970.

Mathews, J. A. and K. Baumeister, "Damage to Pavement Due to Axle Loads," Report No. 76-64, Calif. Dept. of Transportation Laboratory, Sacramento, California, 1976.

Maximun Desirable "Dimensions and Weights of Vehicles Operated on the Federal-Aid System," House Document No.354, U.S. Government Documents, Aug. 19, 1964.

McKeel, W. T., Madox, C. E., Kinnier, H. L., and Galambos, C. F., "Loading History Study of Two Highway Bridges in Virginia," Highway Research Record No.354, Highway Research Board, Washington D.C., 1971.

Miklofsky, N. A., "Correlation of Theoretical and Experimental Data for Highway Bridges. Vol. II - Military Loading," Report No. FHWA-RD-75-77, Federal Highway Administration, Washington D.C., 1977.

Morris, J. R. and Skinner, R. E., "Monitoring the Effects of Double-Trailer Trucks," Report No. 114, Transportation Research News, Sept./Oct. 1984.

Moses, F., "Reliability Approaches to Bridge Safety and Truck Loading Uncertainties," Transportation Research Record No. 664, Transportation Research Board, Washington D.C., 1978.
> "Motor Vehicle Size and Weight Standards - Western Regional Objectives Executive Summary," Prepared by Western Highway Institute, San Bruno, California, 1980.

Naam, A. E., "Fatigue in Partially Prestressed Concrete Beams," ACI Publication SP-75, American Concrete Institute, 1982, pp. 25-39.

Ontario Highway Bridge Design Code 1979. Parts 1-4 and Supplements, Ontario Ministry of Transportation and Communications, Ontario, Canada, 1979.

Paxon, G. S., "The Road Test Bridges - History and Objectives," Special Report No. 73, Highway Research Board, Washington D.C., 1972.
"Performance of Pavement Test Sections in the Rehabilitated AASHO Road Test," Physical Research Report No. 76, Illinols Department of Transportation, June 1977.

Rauhut, J. B. and Kenis, W. J., MFactorial Study of Relations Between Pavement Cost and Legal Axle Loads," Transportation Research Record No. 725, Transportation Research Board, Washington D.C., 1979, pp. 22-30.

MRecording and Coding Guide for the Structure Inventory and Appraisal of the Nation's Bridges," U.S. Department of Transportation, Federal Highway Administration, Jan. 1979.

Richardson, R. E., Welch, J. N., and Lower, R. L., "Idaho Legal Loads Study 1984," Idaho Transportation Department, Division of Highways, Mar. 1984.

Ritchie, W. S. Jr., Kotalik, B. F., Stafseth, H. E., and Rhodes, H. J., "Transportation and the New Energy Policies (Truck Sizes and Weights), the AASHTO Statement to the U.S. Senate Committee on Public Works, Subcommitte on Transportation, Feb. 21, 1974.

Rolfe, S. T. and Barsom, J. M., "Fracture Fatigue Control in Structures," Prentice-Hall, Inc., Englewood Cliffs, NJ, 1977, 562 pp..

Sanders, W. W. and Elleby, N. A., "Distribution of Wheel Loads on Highway Bridges," NCHRP Report 83, Transportation Research Record, Washington D.Co, 1970.

Soretz, S., "Contribution to Take Fatigue Strength of Reinforced Concrete," ACI Publication SP-41, American Concrete Institute, 1974, Pp. 35-43.
"Standard Plans for Highway Bridges. Vol II - Structural Steel Superstructures and Vol. IV - Typical Continuous Bridges," U.S. Department of Transportation, Washington D.C., Feb. 1962.
"The Status of Nation's Highways: Conditions and Performance," Report of the Secretaty of Transportation to the Congress, U.S. Department of Transportation, Government Printing Office, Washington D.C., July 1983.
"State Laws and Regulations on Trukc Size and Weight," NCHRP Report 198, Transportation Research Board, Washington D.C., 1979.

Stephenson, H. K. and Cl oninger, K., "Stress Producing Effects of Equivalent Design Loads on Modern Highway Bridges," Bulletin No. 132, Texas Engineering Experiment Station, 1953.

Stephenson, H. K., Noel, J. S., Mayfield, A. D., "Truck Weight Trends Related to Highway Structures," Bulletin No. 19, Texas Transportation Institute, July 1962.

Stephenson, H. K., "Rapid Method for Estimating Maximum Bending Stress in Simple-Span Highway Bridges," Highway Research Record No. 269, Transportation Research Board, Washington D.C., 1960.
"Surface Transportation Act of 1982 - Conference Report," Report No. 97-985, 97th Congress, 2nd Session, U.S. House of Representatives, 1982.

Uazu, J. and Wiseman, G., "Allowable Load on Multiple-Axle Trucks," Transportation Research Record No. 725, Transportation Research Board, Washington D.C., 1979, pp. 31-36.

Viest, I. M., "Presentations of the Bridge Engineering Conference, Part I," Circular No. 201, Transportation Research Board, Washington D.C., Mar. 1979.

Walton, C. M., Brown, J. L., Burke, D., "Heavy Trucks on Texas Highways: An Economic Evaluation," Trasportation Reserach Record No. 725, Transportation Research Board, Washington D.C., 1979, pp. 8-14.

Wise, J. A., Rodgers, T. W., Vincent, G. S., and Dehler, L. T., "Dynamics of Highway Bridges," Proceedings, Highway Research Board, Vo1. 32, 1953.

Yoder, E. J. and Witczak, M. W., "Principles of Pavement Design," John Wiley and Sons, New York, 1975.

## REFERENCES

1. State Laws and Regulations on Truck Size and Weight, National Cooperative Highway Research Program No. 198, 1979.
2. "Policy Concerning Maximum Dimensions, Weights, and Speeds of Motor Vehicles To Be Operated Over the Highways of the United States", adopted by the American Association of State Highway Officials, April 1, 1946.
3. Stephenson, H. K., "Rapid Method of Estimating Maximum Bending Stresses in Simple Span Highway Bridges", Proceedings, Highway Research Board, Washington, D.C., Vol. 39, 1960.
4. Stephenson, H. K., Noel, J. S. and Mayfield, A. Dwain, Truck Weight Trends Related to Highway Structures, Bulletin No. 19, Texas Transportation Institute, July, 1962.
5. Maximum Desirable Dimensions and Weights of Vehicles Operated On The Federal-Aid Systems, House Document No. 354, August 19, 1964.
6. The AASHO Road Test, A Series of Six Reports, Highway Research Board Special Report 61 A through F, 1961 and 1962.
7. The AASHO Road Test, proceedings of a conference held May 16-18, 1962, St. Louis, MO, HRB Special Report 73, National Research Council, Washington, D.C., 1962.
8. AASHO Interim Guide for Design of Pavement Structures, 1972. American Association of State Highway Officials, Washington, D.C., 1974.
9. AASHTO, Standard Specifications for Highway Bridges, 13th Ed., American Association of State Highway and Transportation Officials, Washington, D.C., 1983, 394 pp.
10. Finney, Edwin A., Better Concrete Pavement Serviceability, Iowa University Press, Ames, Iowa, and American Concrete Institute, Detroit, Michigan, 1973, 246 pp.
11. Concrete Pavement Design for Raads and Streets, Portland Cement Association, Chicago, Illinois, 1951.
12. Klaiber, F. Wayne and Lee, Dah-Yim, "The Effects of Air Content, Water-Cement Ratio, and Aggregate Type on the Flexural Fatigue Strength of Plain Concrete", ACI Publication SP-75, American Concrete Institute, Detroit, Michigan, 1982, pp. 111-131.
13. Hoinson, J. M., Somes, M. F., and Helagson, T., "Investigation of Design Factors Affecting Fatigue Strength of Reinforcing Bars Test Program", ACI Publication SP-41, American Concrete Institute, Detroit, Michigan, 1974, pp. 71-107.
14. Naaman, A. E., "Fatigue in Partially Prestressed Concrete Beams", ACI Publication SP-75, American Concrete Institute, Detroit, Michigan, 1982, pp. 25-39.
15. Rolfe, Stanley T. and Barsom, John M., Fracture and Fatigue Control in Structures, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1977, 562 pp.
16. Roper, H. and Hetherton, G. B., "Fatigue of Reinforced Concrete Beams in Air, Chloride Solution, and Sea Water", ACI Publication SP-75, American Concrete Institute, Detroit, Michigan, 1982, pp. 307-330.
17. Changes in Legal Vehicle Weight and Dimensions - Some Economic Effects on Highways. National Cooperative Highway Research Program No. 141, 1973.
18. Highway Structures Design Handbook; Vol. II, Application. Examples. United States Steel Cop., Pittsburg, Pa.
19. Yoder, E. J., and Witczak, M. W., Principles of Pavement Design, 2nd Ed., John Wiley \& Sons, Inc., New York, 1975.
20. Kent, Perry M., and Robey, "1975-1979 National Truck Characteristics Report", U.S. Department of Transportation, Federal Highway Administration, Washington, D.C., June, 1981.
21. U.S. Department of Transportation, Federal Highway Administration Highway Planning Program Manual, Transmittal 107, Appendix 51, Guide for Truck Weight Study Manual, Washington, D.C., April, 1971.
22. SAS Institute, Inc., SAS User's Guide: Basics, 1985 Edition, Cary, NC, 1982, 923 pp.
